Czasopismo
2024
|
Vol. 32, No. 1
|
art. no. e148441
Tytuł artykułu
Autorzy
Krukowski, Paweł
Piskorski, Michał
Rogala, Maciej
Dąbrowski, Paweł
Lutsyk, Iaroslav
Kozłowski, Witold
Kowalczyk, Dorota Anna
Krempiński, Patryk
Ster, Maxime Le
Nadolska, Aleksandra
Toczek, Klaudia
Przybysz, Przemysław
Dunal, Rafał
Ryś, Wojciech
Sarkar, Shankhanil
Łuszczyńska, Beata
Kowalczyk, Paweł J.
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
A graphene/NPB structure with Re₂O₇ as an interfacial layer in the context of its potential use in the design of an organic light-emitting diode (OLED) is investigated. The X-ray photoelectron spectroscopy (XPS) study shows the formation of the Re₂O₇ phase on a monolayer graphene on quartz during thermal deposition in ultra-high vacuum (UHV). The ultraviolet photoelectron spectroscopy (UPS) study shows an enhancement of the work function of the graphene heterostructure after deposition of the Re₂O₇ layer up to 5.4 eV. The hole injection barrier between the Re₂O₇/graphene heterostructure and the N-bis-(1- naphthyl)-N,N-diphenyl-(1,1-biphenyl)-4,4-diamine (NPB) layer was estimated to be 0.35 eV, which is very promising for a good OLED performance.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
art. no. e148441
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
autor
- Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland, pawel.krukowski@uni.lodz.pl
autor
- Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
autor
- Department of Physics, University of Kalyani, Kalyani-741235, Nadia, West Bengal, India
autor
- Department of Molecular Physics (member of National Photovoltaic Laboratory, Poland), Lodz University of Technology, ul. Żeromskiego 116, 90-924 Łódź, Poland
autor
- Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, ul. Pomorska 149/153, 90-236 Łódź, Poland
Bibliografia
- [1] Rao, C. N. R., Sood, A. K., Subrahmanyam, K. S. & Govindaraj, A. Graphene: The new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752-7777 (2009). https://doi.org/10.1002/anie.200901678.
- [2] Weng, Z. et al. Wafer-scale graphene anodes replace indium tin oxide in organic light-emitting diodes. Adv. Opt. Mater. 10, 2101675 (2022). https://doi.org/10.1002/adom.202101675.
- [3] Kwon, O. E. et al. A prototype active-matrix OLED using graphene anode for flexible display application. J. Inf. Disp. 21, 49-56 (2020). https://doi.org/10.1080/15980316.2019.1680452.
- [4] Krukowski, P. et al. Graphene on quartz modified with rhenium oxide as a semitransparent electrode for organic electronics. Opto-Electron. Rev. 30, e141953 (2022). https://doi.org/10.24425/opelre.2022.141953.
- [5] Naghdi, S., Sanchez-Arriaga, G. & Rhee, K. Y. Tuning the work function of graphene toward application as anode and cathode. J. Alloys Compd. 805, 1117-1134 (2019). https://doi.org/10.1016/j.jallcom.2019.07.187.
- [6] Yoon, T., Wu, Q., Yun, D.-J., Kim, S. H. & Song, Y. J. Direct tuning of graphene work function via chemical vapor deposition control. Sci. Rep. 10, 9870 (2020). https://doi.org/10.1038/s41598-020-66893-y.
- [7] Tan, R. K. L. et al. Graphene as a flexible electrode: review of fabrication approaches. J. Mater. Chem. A 5, 17777-17803 (2017). https://doi.org/10.1039/C7TA05759H.
- [8] Yang, N. et al. Design and adjustment of the graphene work function via size, modification, defects, and doping: a first-principle theory study. Nanoscale Res. Lett. 12, 642 (2017). https://doi.org/10.1186/s11671-017-2375-3.
- [9] Meyer, J. et al. Metal oxide induced charge transfer doping and band alignment of graphene electrodes for efficient organic light emitting diodes. Sci. Rep. 4, 5380 (2014). https://doi.org/10.1038/srep05380.
- [10] Kowalczyk, D. A. et al. Local electronic structure of stable monolayers of α-MoO3-x grown on graphite substrate. 2D Mater. 8, 25005 (2020). https://doi.org/10.1088/2053-1583/abcf10.
- [11] Kowalczyk, D. A. et al. Two-dimensional crystals as a buffer layer for high work function applications: the case of monolayer MoO3. ACS Appl. Mater. Interfaces 14, 44506-44515 (2022). https://doi.org/10.1021/acsami.2c09946.
- [12] Lei, Y. et al. Graphene and beyond: recent advances in two-dimensional materials synthesis, properties, and devices. ACS Nanosci. Au 2, 450-485 (2022). https://doi.org/10.1021/acsnanoscienceau.2c00017.
- [13] Krukowski, P. et al. Work function tunability of graphene with thermally evaporated rhenium heptoxide for transparent electrode applications. Adv. Eng. Mater. 22, 1900955 (2020). https://doi.org/10.1002/adem.201900955.
- [14] Kowalczyk, P. J. et al. Flexible photovoltaic cells based on two-dimensional materials and their hybrids. Przeglad Elektrotechniczny 98, 117-120 (2022). (in Polish) https://doi.org/10.15199/48.2022.02.26.
- [15] Pabianek, K. et al. Interactions of Ti and its oxides with selected surfaces: Si(100), HOPG(0001) and graphene/4H-SiC(0001). Surf Coat. Technol. 397, 126033 (2020). https://doi.org/10.1016/j.surfcoat.2020.126033.
- [16] Le, Q.-T. et al. Interface formation between NPB and processed indium tin oxide. Thin Solid Films 363, 42-46 (2000). https://doi.org/10.1016/S0040-6090(99)00979-7.
- [17] Ha, J. M., Hur, S. H., Pathak, A., Jeong, J.-E. & Woo, H. Y. Recent advances in organic luminescent materials with narrowband emission. NPG Asia Mater. 13, 53 (2021). https://doi.org/10.1038/s41427-021-00318-8.
- [18] Pan, S. et al. Toward improved device efficiency and stability of organic light-emitting diodes via external pressure treatment. Phys. Status Solidi A 218, 2100120 (2021). https://doi.org/10.1002/pssa.202100120.
- [19] Le, Q. T. et al. X-ray photoelectron spectroscopy and atomic force microscopy investigation of stability mechanism of tris-(8-hydroxyquinoline) aluminum-based light-emitting devices. J. Vac. Sci. Technol. A 17, 2314-2317 (1999). https://doi.org/10.1116/1.581766.
- [20] Fairley, N. et al. Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy. Appl. Surf. Sci. Adv. 5, 100112 (2021). https://doi.org/10.1016/j.apsadv.2021.100112.
- [21] Greiner, M. T. et al. The oxidation of rhenium and identification of rhenium oxides during catalytic partial oxidation of ethylene: An in-situ XPS study. Z. Phys. Chem. 228, 521-541 (2014). https://doi.org/10.1515/zpch-2014-0002.
- [22] Zubkins, M. et al. Tailoring of rhenium oxidation state in ReOx thin films during reactive HiPIMS deposition process and following annealing. Mater. Chem. Phys. 289, 126399 (2022). https://doi.org/10.1016/j.matchemphys.2022.126399.
- [23] Kim, J. W. & Kim, A. Absolute work function measurement by using photoelectron spectroscopy. Curr. App. Phys. 31, 52-59 (2021). https://doi.org/10.1016/j.cap.2021.07.018.
- [24] Baikie, I. D. et al. Work function study of rhenium oxidation using an ultra high vacuum scanning Kelvin probe. J. Appl. Phys. 88, 4371-4375 (2000). https://doi.org/10.1063/1.1289486.
- [25] Wu, Q.-H. et al. Electronic structure of MoO3-x/graphene interface. Carbon 65, 46-52 (2013). https://doi.org/10.1016/j.carbon.2013.07.091.
- [26] Lawler, K. V et al. Molecular and electronic structures of M2O7 (M = Mn, Tc, Re). Inorg. Chem. 56, 2448-2458 (2017). https://doi.org/10.1021/acs.inorgchem.6b02503.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3abcfa13-2fb6-4391-8474-c11d7c2a9471