Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 1, no. 1 | 71--76
Tytuł artykułu

Numerical Modelling as a Tool for Investigating Hydrogen Explosions

Treść / Zawartość
Warianty tytułu
PL
Modelowanie numeryczne jako narzędzie do badania wybuchów wodoru
Języki publikacji
EN
Abstrakty
EN
Currently, the burning of fossil fuels in industry or for transportation has a major negative impact on the environment. Most countries are concerned with environmental security and pollution regulation, motivating researchers around the world to find alternative solutions. An alternative solution may be the large-scale use of hydrogen. Applications of hydrogen in industry or for transportation face challenging conditions. Among other things, we are talking about pressures of up to 1000 bar, extreme temperatures starting from -253 °C (for liquefied hydrogen) and up to 650 °C - 950 °C (in the case of solid oxide electrolytic cells), as well as the imminent risk of explosion. This is because H2 has an extremely low ignition energy, with much wider flammability limits compared to other fuels such as methane or propane. Hydrogen is a highly reactive and explosive gas. Therefore, explosion protection is essential for all processes involving the use of hydrogen in one form or another. The same principles that are applied to natural gas can be applied. Hydrogen behaves similarly to methane in terms of explosion risk, meaning in principle that explosion protection works similarly for both gases. However, there are still many unknowns regarding the phenomenon of initiation and propagation of explosions caused by air-hydrogen mixtures. Taking into account the multiple aspects related to security techniques that must be taken into account for the use of hydrogen in industry or for transport, the current paper focuses on aspects with regard to the use of modern numerical modelling tools for increasing the occupational health and safety level in technological processes endangered by the occurrence of explosive atmospheres generated by air-hydrogen mixtures. It presents a review on the main research activities to be carried out within a the H2Model research project implemented between 2023 – 2026, project which focuses on numerical modelling on the ignition and propagation of explosions caused by air-hydrogen mixtures.
Wydawca

Rocznik
Strony
71--76
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
  • National Institute for Research and Development in Mine Safety and Protection to Explosion – INSEMEX, 32- 34 General Vasile Milea, Petrosani, 332047, Romania, vlad.pasculescu@insemex.ro
  • National Institute for Research and Development in Mine Safety and Protection to Explosion – INSEMEX, 32- 34 General Vasile Milea, Petrosani, 332047, Romania, emilian.ghicoi@insemex.ro
  • National Institute for Research and Development in Mine Safety and Protection to Explosion – INSEMEX, 32- 34 General Vasile Milea, Petrosani, 332047, Romania, nicolae.vlasin@insemex.ro
  • National Institute for Research and Development in Mine Safety and Protection to Explosion – INSEMEX, 32- 34 General Vasile Milea, Petrosani, 332047, Romania, marius.suvar@insemex.ro
  • National Institute for Research and Development in Mine Safety and Protection to Explosion – INSEMEX, 32- 34 General Vasile Milea, Petrosani, 332047, Romania, marius.morar@insemex.ro
Bibliografia
  • 1. D. Cirrone, D. Makarov and V. Molkov, “Rethinking “BLEVE explosion” after liquid hydrogen storage tank rupture in a fire”, Int. J. Hydrog. Energy 48, 8716-8730 (2023).
  • 2. H. Barthelemy, M. Weber and F. Barbier F., “Hydrogen storage: recent improvements and industrial perspectives”, Int. J. Hydrog. Energy 42, 7254-7265 (2017).
  • 3. S. E. Yakush, “Model for blast waves of boiling liquid expanding vapor explosions”. Int. J. Heat Mass. Tran. 103, 173-185 (2016).
  • 4. J. Casal, Evaluation of the effects and consequences of major accidents in industrial plants (Elsevier, Amsterdam, 2008).
  • 5. F. Ustolin, N. Paltrinieri and G. Landucci, “An innovative and comprehensive approach for the consequence analysis of liquid hydrogen vessel explosions”, J. Loss. Prev. Process. Ind. 68, 104323 (2020).
  • 6. D. Grecea, G. Pupazan, M. Paraian and C. Colda, “Use of hydrogen as a source of clean energy”, E3S Web of Conferences 239, edited by P. Siano (EDP Sciences, France, 2021), 00013.
  • 7. V. M. Pasculescu, M. C. Suvar, L. I. Tuhut and L. Munteanu, “Numerical modelling of hydrogen release and dispersion”, MATEC Web of Conferences 342, (EDP Sciences, France, 2021), 01004.
  • 8. A. B. Simon-Marinica, V. M. Pasculescu, F. Manea and Z. Vass, “The use of computational fluid dynamics
  • 9. applications to various flow problems”, MATEC Web of Conferences 373, (EDP Sciences, France, 2020), 00050.
  • 10. V. M. Pasculescu, E. Ghicioi, D. Pasculescu and M. Suciu, “Modelling the occupational exposure of workers to certain hazardous chemicals”, MATEC Web of Conferences 305, (EDP Sciences, France, 2020), 00047.
  • 11. C. B. Jang and S. Jung, “Numerical computation of a large-scale jet fire of high-pressure hydrogen in process plant”. Energy Science and Engineering 4, 406-417 (2016).
  • 12. S. Brennan, D. Makarov and V. Molkov, “LES of high pressure hydrogen jet fire”. Int. J. Hydrogen Energy 36, 2360–2366 (2009).
  • 13. L. Zhiyong, P. Xiangmin and M. Jianxin, “Harm effect distances evaluation of severe accidents for gaseous hydrogen refueling station”. Int. J. Hydrogen Energy 35, 1515–1521 (2010).
  • 14. S. Kikukawa, H. Mitsuhashi and A. Miyake, “Risk assessment for liquid hydrogen fueling stations”. Int. J. Hydrogen Energy 34,1135–1141 (2009).
  • 15. L. Ruipengyu, M. Weeratunge and I. Salah, “Numerical study of vented hydrogen explosions in a small scale obstructed chamber”. Int. J. Hydrogen Energy 43, 16667–16683 (2018).
  • 16. Z. Y. Zhao, M. Liu, G. P. Xiao, T. C. Cui, Q. X. Ba and X. F. Li, “Numerical study on protective measures for a skid-mounted hydrogen refueling station”. Energies 16, 910 (2023).
  • 17. D. A. Crowl and Y. D. Jo, “The hazards and risks of hydrogen”. J. Loss. Prev. Process Ind. 20, 158-164 (2007).
  • 18. X. Rocourt, S. Awamat, I. Sochet and S. Jallais, “Vented hydrogen-air deflagration in a small enclosed volume”. Int. J. Hydrogen Energy 39, 20462–20466 (2014).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3a43db85-5b50-4e97-a75d-de3b057fe7b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.