Czasopismo
2016
|
Vol. 64, no. 4
|
1112--1138
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The collision of the Indian plate and the Eurasian plate created shortening and imbrications with thrusting and faulting which influences northward tectonic movement. This plate movement has divided the Himalaya into four parts, viz. Outer Himalaya, Lesser Himalaya, Greater Himalaya, and Tethys Himalaya. The crystalline basement rock plays an imperative role for structural and tectonic association. The study has been carried out near Rishikesh-Badrinath neighborhood in the northwestern part of the Himalayan girdle with multifarious tectonic set up with thrusted and faulted geological setting. In this study area, 3D Euler deconvolution, horizontal gradient analysis, tilt angle (TILT) and horizontal tilt angle (TDX) analysis have been carried out using gravity data to delineate the subsurface geology and heterogeneity in the northwestern part of Himalaya. The Euler depth solutions suggest the source depth of about 12 km and various derivative analyses suggest the trend of the delineation thrust-fault boundaries along with the dip and strike direction in the study area.
Czasopismo
Rocznik
Tom
Strony
1112--1138
Opis fizyczny
Bibliogr. 71 poz.
Twórcy
autor
- Oil India Limited, Duliajan, Assam, India, gk_ghosh@yahoo.com
Bibliografia
- Ansari, A.H., and K. Alamdar (2011), A new edge detection method based on the analytic signal of tilt angle ASTA for magnetic and gravity anomalies, Iran. J. Sci. Technol. 35, A2, 81-88.
- Arora, B.R., M.J. Unsworth, and G. Rawat (2007), Deep resistivity structure of the northwest Indian Himalaya and its tectonic implications, Geophys. Res. Lett. 34, 1-4, DOI: 10.1029/2006gl029165.
- Beaumont, C., R.A. Jamieson, M.H. Nguyen, and B. Lee (2001), Himalayan tectonics explained by extrusion of low-viscosity crustal channel coupled to focus surface denudation, Nature 414, 6865, 738-742, DOI: 10.1038/414738a.
- Bhattacharya, A.R. (1999), Deformational regimes across the Kumaun Himalaya: A study in strain patterns, Gondwana Res. Mem. (Japan) 6, 81-90.
- Bhattacharya, A.R., and K. Weber (2004), Fabric development during shear deformation in the Main Central Thrust Zone, NW-Himalaya, India, Tectonophysics 387, 1-4, 23-47, DOI: 10.1016/j.tecto.2004.04.026.
- Blakely, R.J., and R.W. Simpson (1986), Approximating edges of source bodies from magnetic or gravity anomalies, Geophysics 51, 7, 1494-1498, DOI: 10.1190/1.1442197.
- Bouchez, J.L., and A. Pecher (1981), The Himalayan Main Central Thrust pile and its quartz-rich tectinites in Central Nepal, Tectonophysics 78, 1-4, 23-50, DOI: 10.1016/0040-1951(81)90004-4.
- Burg, J.P., M. Brunel, D. Gapais, G.M. Chen, and G.H. Liu (1984), Deformation of leucogranites of the crystalline Main Central Thrust Sheet in southern Tibet China, J. Struct. Geol. 6, 5, 535-542, DOI: 10.1016/0191-8141(84)90063-4.
- Cascone, L., and S. Campbell (2012), ACLAS: A new automatic method of defining potential field lineaments using coherency analysis. In: Proc. SEG Annual Meeting, 4-9 November 2012, Las Vegas, USA, SEG-2012-1254.
- Chamoli, A., A.K. Pandey, V.P. Dimri, and P. Banerjee (2011), Crustal configuration of the northwest Himalaya based on modeling of gravity data, Pure Appl. Geophys. 168, 5, 827-844, DOI: 10.1007/s00024-010-0149-2.
- Cooper, G.R.J. (2002), An improved algorithm for the Euler deconvolution of potential field data, The Leading Edge 21, 12, 1197-1198, DOI: 10.1190/ 1.1536132.
- Cooper, G.R.J., and D.R. Cowan (2006), Enhancing potential field data using filters based on the local phase, Comput. Geosci. 32, 10, 1585-1591, DOI: 10.1016/j.cageo.2006.02.016.
- Cordell, L., and V.J.S. Grauch (1982), Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico. In: Proc. 52nd SEG Annual Meeting, 17-21 October 1982, Dallas, USA, SEG-1982-0246.
- Corner, B., and W.A. Wilsher (1989), Structure of the Witwatersrand basin derived from interpretation of the aeromagnetic and gravity data. In: G.D. Garland (ed.), Proc. Exploration ’87: Third Decennial Int. Conf. on Geophysical and Geochemical Exploration for Minerals and Groundwater, Ontario Geol. Survey, Special Vol. 3, 532-546.
- Fedi, M. (2002), Multiscale derivative analysis: A new tool to enhance gravity source boundaries at various scales, Geophys. Res. Lett. 29, 2, 1029-1032, DOI: 10.1029/2001GL013866.
- Fedi, M. (2007), DEXP: A fast method to determine the depth and the structural index of potential fields sources, Geophysics 72, 1, l1-l11, DOI: 10.1190/ 1.2399452.
- Fedi, M., and G. Florio (2001), Detection of potential fields source boundaries by enhanced horizontal derivative method, Geophys. Prospect. 49, 1, 40-58, DOI: 10.1046/j.1365-2478.2001.00235.x.
- Fedi, M., G. Florio, and L. Cascone (2012), Multiscale analysis of potential fields by a ridge consistency criterion: the reconstruction of the Bishop basement, Geophys. J. Int. 188, 1, 103-114, DOI: 10.1111/j.1365-246X.2011.05259.x.
- FitzGerald, D., A.B. Reid, and P. McInerney (2004), New discrimination techniques for Euler deconvolution, Comput. Geosci. 30, 5, 461-469, DOI: 10.1016/ j.cageo.2004.03.006.
- Gansser, A. (1964), Geology of the Himalayas, Interscience Publ., London, 289 pp.
- Ghosh, G.K., and C.L. Singh (2014), Spectral analysis and Euler deconvolution technique of gravity data to decipher the basement depth in the DehradunBadrinath area, J. Geol. Soc. India 83, 5, 501-512, DOI: 10.1007/s12594- 014-0077-3.
- Gokarn, S.G., C.K. Rao, and G. Gupta (2002), Crustal structure in the Siwalik Himalayas using magnetotelluric studies, Earth Planets Space 54, 1, 19-30, DOI: 10.1186/BF03352418.
- Grasemann, B., H. Fritz, and J.C. Vannay (1999), Quantitative kinematic flow analysis from the Main Central Thrust Zone NW-Himalaya: implications for a decelerating strain path and extrusion of orogenic wedges, J. Struct. Geol. 21, 7, 837-853, DOI: 10.1016/S0191-8141(99)00077-2.
- Grauch, V.J.S., and L. Cordell (1987), Limitations on determining density or magnetic boundaries from the horizontal gradient of gravity or pseudogravity data, Geophysics 52, 1, 118-121, DOI: 10.1190/1.1442236.
- Heim, A., and A. Gansser (1939), Central Himalaya: Geological Observations of the Swiss Expedition 1936, Hindustan Publ., Delhi, 284 pp.
- Hsu, S.K., J.C. Sibuet, and C.T. Shyu (1996), High resolution detection of geological boundaries from potential field anomalies. An enhanced analytic signal technique, Geophysics 61, 2, 373-386, DOI: 10.1190/1.1443966.
- Huang, D., D. Gubbins, R.A. Clark, and K.A. Whaler (1995), Combined study of Euler’s homogeneity equation for gravity and magnetic field. In: 57th EAGE Conference and Technical Exhibition; European Association of Exploration Geophysics, Extended abstr., 144, DOI: 10.3997/2214-4609. 201409565.
- Kaila, K.L. (1982), Deep seismic sounding studies in India, Geophys. Res. Bull. 20, 3, 309-328.
- Khattri, K.N., R. Chander, V.K. Gaur, I. Sarkar, and S. Kumar (1989), New seismological results on the tectonics of the Garhwal Himalaya, Proc. Indian Acad. Sci. Earth Planet Sci. 98, 1, 91-109, DOI: 10.1007/BF02880378.
- Klingele, E.E., I. Marson, and H.G. Kahle (1991), Automatic interpretation of gravity gradiometric data in two dimensions: Vertical gradients, Geophys. Prospect. 39, 3, 407-434, DOI: 10.1111/j.1365-2478.1991.tb00319.x.
- Le Fort, P. (1975), Himalayas: the collided range. Present knowledge of the continental arc, Am. J. Sci. 275A, 1, 1-44.
- Leech, M.L., S. Singh, A.K. Jain, S.L. Klemperer, and R.M. Manickavasagam (2005), The onset of India–Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya, Earth Planet. Sci. Lett. 234, 1-2, 83-97, DOI: 10.1016/j.epsl.2005.02. 038.
- Lyon-Caen, H., and P. Molnar (1985), Gravity anomalies, flexure of the Indian plate, and the structure, support and evolution of the Himalaya and Ganga Basin, Tectonics 4, 6, 513-538, DOI: 10.1029/TC004i006p00513.
- Marson, I., and E.E. Klingele (1993), Advantages of using the vertical gradient of gravity for 3-D interpretation, Geophysics 58, 11, 1588-1595, DOI: 10.1190/1.1443374.
- Melo, F.F., V.C.F. Barbosa, L. Uieda, V.C. Oliveira Jr., and J.B.C. Silva (2013), Estimating the nature and the horizontal and vertical positions of 3D magnetic sources using Euler deconvolution, Geophysics 78, 6, J87-J98, DOI: 10.1190/geo2012-0515.1.
- Mikhailov, V., M. Galdeano, A. Gvishiani, S. Agayan, S. Bogoutdinov, E. Graeva, and P. Sailhac (2003), Application of artificial intelligence for Euler solutions clustering, Geophysics 68, 1, 168-180, DOI: 10.1190/1.1543204.
- Miller, H.G., and V. Singh (1994), Potential field tilt – a new concept for location of potential field sources, J Appl. Geophys. 32, 2-3, 213-217, DOI: 10.1016/ 0926-9851(94)90022-1.
- Milligan, P.R., P. Petkovic, and B.J. Drummond (2003), Potential-field datasets for the Australian region: their significance in mapping basement architecture, GSA Spec. Pap. 372, 129-139, DOI: 10.1130/0-8137-2372-8.129.
- Molnar, P., and W.P. Chen (1982), Seismicity and mountain building. In: K. Hsu (ed.), Mountain Building Processes, Academic Press, London, 41-57.
- Molnar, P., W.P. Chen, T.J. Fitch, P. Tapponier, W.E.K. Warsi, and F.T. Wu (1977), Structure and tectonics of the Himalaya: a brief summary of relevant geophysical observations, Colloq. Inter. CNRS 268, 269-294.
- Mushayandebvu, M.F., V. Lesur, A.B. Reid, and J.D. Fairhead (2004), Grid Euler deconvolution with constraints for 2D structures, Geophysics 69, 2, 489- 496, DOI: 10.1190/1.1707069.
- Nabighian, M.N., and R.O. Hansen (2001), Unification of Euler and Werner deconvolution in three dimensions via the generalized Hilbert transform, Geophysics 66, 6, 1805-1810, DOI: 10.1190/1.1487122.
- Ni, J., and M. Barazangi (1984), Seismotectonics of the Himalaya Collision Zone: Geometry of the underthrusting Indian Plate beneath the Himalaya, J. Geophys. Res. 89, B2, 1147-1164, DOI: 10.1029/JB089iB02p01147.
- Oruc, B. (2010), Edge detection and depth estimation using a tilt angle map from gravity gradient data of the Kozaklı-Central Anatolia Region, Turkey, Pure Appl. Geophys. 168, 10, 1769-1780, DOI: 10.1007/s00024-010-0211-0.
- Patriat, P., and J. Achache (1984), India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates, Nature 311, 5987, 615-621, DOI: 10.1038/311615a0.
- Phillips, J.D., R.O. Hansen, and R.J. Blakely (2007), The use of curvature in potential-field interpretation, Explor. Geophys. 38, 2, 111-119, DOI: 10.1071/ EG07014.
- Pilkington, M., A. Abdoh, and D.R. Cowan (1995), Pre-Mesozoic structure of the Inner Moray Firth Basin: constraints from gravity and magnetic data, First Break 13, 7, 291-300, DOI: 10.3997/1365-2397.1995015.
- Qureshy, M.N. (1981), Gravity anomalies, isostasy and crust mantle relations in the Deccan Trap and contiguous regions, India. In: K.V. Subha Rao and R.N. Sukheswala (eds.), Deccan Volcanism and Related Basalt Provinces in Other Parts in the World, Geological Society of India, Bangalore, 184- 197.
- Qureshy, M.N. (2004), Geophysical Framework of India, Bangladesh and Pakistan, Narosa Publication, 200 pp. Qureshy, M.N., S.V. Venkatachalam, and C. Subrahmanyam (1974), Vertical tectonics in Middle Himalaya: an appraisal from recent gravity data, Bull. Geol. Soc. Amer. 85, 6, 921-026, DOI: 10.1130/0016-7606(1974)852.0.CO;2.
- Reddy, C.D., and B.R. Arora (1993), Quantitative interpretation of geomagnetic induction response across the thrust zones of Himalaya along the Ganga Yamuna valley, J. Geomag. Geoelectr. 45, 9, 775-785. Reid, A.B., and J.B. Thurston (2014), The structural index in gravity and magnetic interpretation: Errors, uses, and abuses, Geophysics 79, 4, J61-J66, DOI: 10.1190/GEO2013-0235.1.
- Reid, A.B., J.M. Allsop, H. Granser, A.J. Millett, and I.W. Somerton (1990), Magnetic interpretation in three dimensions using Euler deconvolution, Geophysics 55, 1, 80-91, DOI: 10.1190/1.1442774.
- Reid, A.B., D. FitzGerald, and P. McInerny (2003), Euler deconvolution of gravity data. In: Proc. 73rd SEG Annual International Meeting, 26-31 October 2003, Dallas, USA, SEG-2003-0580.
- Reid, A.B., J.O. Ebbing, and S.J. Susan (2014), Avoidable Euler errors – the use and abuse of Euler deconvolution applied to potential fields, Geophys. Prospect. 62, 5, 1162-1168, DOI: 10.1111/1365-2478.12119.
- Shanker, D., N. Kapur, and B. Singh (2002), Thrust-wedge mechanics and coeval development of normal and reverse faults in the Himalayas, J. Geol. Soc. London 159, 3, 273-280, DOI: 10.1144/0016-764901-059.
- Silva, J.B.C., and V.C.F. Barbosa (2003), 3D Euler deconvolution: Theoretical basis for automatically selecting good solutions, Geophysics 68, 6, 1962-1968, DOI: 10.1190/1.1635050.
- Sinha, A.K. (1987), Tectonic zonation of the Central Himalayas and the Crustal evolution of collision and compressional belts, Tectonophysics 134, 1-3, 59-74, DOI: 10.1016/0040-1951(87)90249-6.
- Smith, R.S., J.B. Thurston, T.F. Dai, and I.N. MacLeod (1998), iSPITM – The improved source parameter imaging method, Geophys. Prospect. 46, 2, 141- 151, DOI: 10.1046/j.1365-2478.1998.00084.x.
- Stavrev, P.Y. (1997), Euler deconvolution using differential similarity transformations of gravity and magnetic anomalies, Geophys. Prospect. 45, 2, 207- 246, DOI: 10.1046/j.1365-2478.1997.00331.x.
- Stavrev, P., and A. Reid (2007), Degrees of homogeneity of potential fields and structural indices of Euler deconvolution, Geophysics 72, 1, L1-L2, DOI: 10.1190/1.2400010.
- Stavrev, P., and A. Reid (2010), Euler deconvolution of gravity anomalies from thick contact/fault structures with extended negative structural index, Geophysics 75, 6, 151-158, DOI: 10.1190/1.3506559.
- Thompson, D.T. (1982), EULDPH: A new technique for making computer assisted depth estimates from magnetic data, Geophysics 47, 1, 31-37, DOI: 10.1190/1.1441278.
- Tripathi, J.N., P. Singh, and M.L. Sharma (2012), Variation of seismic coda wave attenuation in the Garhwal region, northwestern Himalaya, Pure Appl. Geophys. 169, 1, 71-88, DOI: 10.1007/s00024-011-0316-0.
- Vannay, J.C., and B. Grasemann (2001), Himalayan inverted metamorphism and syn-convergence extension as a consequence of a general shear extrusion, Geol. Mag. 138, 3, 253-276, DOI: 10.1017/S0016756801005313.
- Verduzco, B., J.D. Fairhead, C.M. Green, and C. MacKenzie (2004), New insights into magnetic derivatives for structural mapping, The Leading Edge 23, 2, 116-119, DOI: 10.1190/1.1651454.
- Wijns, C., C. Perez, and P. Kowalczyk (2005), Theta Map: Edge detection in magnetic data, Geophysics 70, 4, L39-L43, DOI: 10.1190/1.1988184.
- Williams, S.E., J.D. Fairhead, and G. Flanagan (2005), Comparison of grid Euler deconvolution with and without 2D constraints using a realistic 3D magnetic basement model, Geophysics 70, 3, L13-L21, DOI: 10.1190/ 1.1925745.
- Wilsher, W.A. (1987), A structural interpretation of the Witwatersrand basin through the application of automated depth algorithms to both gravity and aeromagnetic data, M.Sc. Thesis, University of Witwatersrand, Johannesburg, South Africa.
- Yaghoobian, A., G.A. Boustead, and T.M. Dobush (1993), Object delineation using Euler’s momogeneity equation: Location and depth determination of buried ferro-metallic bodies. In: Proc. Symp. on Application of Geophysics to Engineering and Environmental Problems 1993, San Diego, USA, 613-632, DOI: 10.4133/1.2922042.
- Yuanyuan, L., Y. Yushan, and L. Tianyou (2010), Derivative-based techniques for geological contact mapping from gravity data, J. Earth Sci. 21, 3, 358-364, DOI: 10.1007/s12583-010-0099-8.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na
działalność upowszechniającą naukę
działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3a236248-7b5d-4700-9cfe-0662ee80d7a5