Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 23, nr 1(75) | 98--109
Tytuł artykułu

Phenomenological model of cavitation erosion of nitrogen ion implanted HIPed Stellite 6

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stellites are a group of Co-Cr-C-W/Mo-containing alloys showing outstanding behavior under cavitation erosion (CE) operational conditions. The process of ion implantation can improve the CE resistance of metal alloys. This work presents the elaborated original phenomenological model of CE of nitrogen ion implanted HIP-consolidated (Hot Isostatically Pressed) cobalt alloy grade Stellite 6. The ultrasonic vibratory test rig was used for CE testing. The nitrogen ion implantation with 120 keV and fluence of 5 × 1016 N+/cm−2 improves HIPed Stellite 6 cavitation erosion resistance two times. Ion-implanted HIPed Stellite 6 has more than ten times higher CE resistance than the reference AISI 304 stainless steel sample. Comparative analysis of AFM, SEM and XRD results done at different test intervals reveals the kinetic of CE process. The model includes the surface roughness development and clarifies the meaning of cobalt-based matrix phase transformations under the nitrogen ion implantation and cavitation loads. Ion implantation modifies the cavitation erosion mechanisms of HIPed Stellite 6. The CE of unimplanted alloy starts on material loss initiated at the carbides/matrix interfaces. Deterioration starts with cobalt matrix plastic deformation, weakening the carbides restraint in the metallic matrix. Then, the cobalt-based matrix and further hard carbides are removed. Finally, a deformed cobalt matrix undergoes cracking, accelerating material removal and formation of pits and craters' growth. The nitrogen ion implantation facilitates ɛ (hcp—hexagonal close-packed)) → γ (fcc—face-centered cubic) phase transformation, which further is reversed due to cavitation loads, i.e., CE induces the γ → ɛ martensitic phase transformation of the cobalt-based matrix. This phenomenon successfully limits carbide removal by consuming the cavitation loads for martensitic transformation at the initial stages of erosion. The CE incubation stage for ion implanted HIPed Stellite 6 lasts longer than for unimplanted due to the higher initial content of γ phase. Moreover, this phase slows the erosion rate by restraining carbides in cobalt-based matrix, facilitating strain-induced martensitic transformation and preventing the surface from severe material loss.
Wydawca

Rocznik
Strony
98--109
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
  • Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Poland, m.szala@pollub.pl
Bibliografia
  • 1. Zhao, L.; Hu, H.; Guo, X. Effect of Toughness and Ductility on the Cavitation Erosion of Martensitic Stainless Steel. Metals 2023, 13, 154, doi:10.3390/met13010154.
  • 2. Diao, P.; Wang, F.; Chu, X.; Long, Y.; Xie, Y.; Deng, C.; Huang, G.; Liu, M.; Yu, Z. Microstructure, Mechanical Properties, and Cavitation Erosion Performances of Cold Sprayed CuZn35 Coatings. Surface and Coatings Technology 2022, 451, 129074, doi:10.1016/j.surfcoat.2022.129074.
  • 3. Kim, J.H.; Hong, H.S.; Kim, S.J. Effect of Boron Addition on the Cavitation Erosion Resistance of Fe-Based Hardfacing Alloy. Materials Letters 2007, 61, 1235–1237, doi:10.1016/j.matlet.2006.07.015.
  • 4. Krella, A.; Marchewicz, A. Effect of Mechanical Properties of CrN/CrCN Coatings and Uncoated 1.402 Stainless Steel on the Evolution of Degradation and Surface Roughness in Cavitation Erosion. Tribology International 2023, 177, doi:10.1016/j.triboint.2022.107991.
  • 5. Lee, M.; Kim, Y.; Oh, Y.; Kim, Y.; Lee, S.; Hong, H.; Kim, S. Study on the Cavitation Erosion Behavior of Hardfacing Alloys for Nuclear Power Industry. Wear 2003, 255, 157–161, doi:10.1016/S0043-1648(03)00144-3.
  • 6. Szala, M.; Walczak, M.; Świetlicki, A. Effect of Microstructure and Hardness on Cavitation Erosion and Dry Sliding Wear of HVOF Deposited CoNiCrAlY, NiCoCrAlY and NiCrMoNbTa Coatings. Materials 2022, 15, 1–15.
  • 7. Mitelea, I.; Bordeaşu, I.; Mutaşcu, D.; Buzdugan, D.; Crăciunescu, C.M. Cavitation Resistance of Stellite 21 Coatings Tungsten Inert Gas (TIG) Deposited onto Duplex Stainless Steel X2CrNiMoN22-5-3. Materials Testing 2022, 64, 967–976, doi:10.1515/mt-2021-2169.
  • 8. Singh, R.; Kumar, D.; Mishra, S.K.; Tiwari, S.K. Laser Cladding of Stellite 6 on Stainless Steel to Enhance Solid Particle Erosion and Cavitation Resistance. Surface and Coatings Technology 2014, 251, 87–97, doi:10.1016/j.surfcoat.2014.04.008.
  • 9. Ciubotariu, C.-R.; Secosan, E.; Marginean, G.; Frunzaverde, D.; Campian, V.C. Experimental Study Regarding the Cavitation and Corrosion Resistance of Stellite 6 and Self-Fluxing Remelted Coatings. Strojniski Vestnik/Journal of Mechanical Engineering 2016, 62, 154–162, doi:10.5545/sv-jme.2015.2663.
  • 10. Jonda, E.; Szala, M.; Sroka, M.; Łatka, L.; Walczak, M. Investigations of Cavitation Erosion and Wear Resistance of Cermet Coatings Manufactured by HVOF Spraying. Applied Surface Science 2023, 608, 155071, doi:10.1016/j.apsusc.2022.155071.
  • 11. Wang, Q.; Tang, Z.; Cha, L. Cavitation and Sand Slurry Erosion Resistances of WC-10Co-4Cr Coatings. Journal of Materials Engineering and Performance 2015, 24, 2435–2443, doi:10.1007/s11665-015-1496-z.
  • 12. Wu, Y.; Hong, S.; Zhang, J.; He, Z.; Guo, W.; Wang, Q.; Li, G. Microstructure and Cavitation Erosion Behavior of WC–Co–Cr Coating on 1Cr18Ni9Ti Stainless Steel by HVOF Thermal Spraying. International Journal of Refractory Metals and Hard Materials 2012, 32, 21–26, doi:10.1016/j.ijrmhm.2012.01.002.
  • 13. Ding, X.; Ke, D.; Yuan, C.; Ding, Z.; Cheng, X. Microstructure and Cavitation Erosion Resistance of HVOF Deposited WC-Co Coatings with Different Sized WC. Coatings 2018, 8, 307, doi:10.3390/coatings8090307.
  • 14. Krella, A.K. Cavitation Erosion of Monolayer PVD Coatings – An Influence of Deposition Technique on the Degradation Process. Wear 2021, 478–479, 203762, doi:10.1016/j.wear.2021.203762.
  • 15. Nowakowska, M.; Łatka, L.; Sokołowski, P.; Szala, M.; Toma, F.-L.; Walczak, M. Investigation into Microstructure and Mechanical Properties Effects on Sliding Wear and Cavitation Erosion of Al2O3–TiO2 Coatings Sprayed by APS, SPS and S-HVOF. Wear 2022, 204462, doi:10.1016/j.wear.2022.204462.
  • 16. Arora, H.S.; Rani, M.; Perumal, G.; Singh, H.; Grewal, H.S. Enhanced Cavitation Erosion–Corrosion Resistance of High-Velocity Oxy-Fuel-Sprayed Ni-Cr-Al2O3 Coatings Through Stationary Friction Processing. Journal of Thermal Spray Technology 2020, 29, 1183–1194, doi:10.1007/s11666-020-01050-5.
  • 17. Oliveira, D.B.; Franco, A.R.; Bozzi, A.C. Influence of Low Temperature Plasma Carbonitriding on Cavitation Erosion Resistance of the Stellite 250 Alloy – A Preliminary Evaluation. Wear 2021, 203653, doi:10.1016/j.wear.2021.203653.
  • 18. Roa, C.V.; Valdes, J.A.; Larrahondo, F.; Rodríguez, S.A.; Coronado, J.J. Comparison of the Resistance to Cavitation Erosion and Slurry Erosion of Four Kinds of Surface Modification on 13-4 Ca6NM Hydro-Machinery Steel. Journal of Materials Engineering and Performance 2021, 30, 7195–7212, doi:10.1007/s11665-021-05908-9.
  • 19. Liu, F.; Wang, J.; Chen, D.; Xu, Y.; Zhao, M. The Cavitation Erosion of the 45# Carbon Steels Implanted with Titanium and Nitrogen. Tribology Transactions 2010, 53, 239–243, doi:10.1080/10402000903226341.
  • 20. Klimpel, A.; Lisiecki, A.; Janicki, D. The Influence of the Shielding Gas on the Properties of a Laser-Melted Surface of Austenitic Stainless Steel. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 2004, 218, 1137–1144, doi:10.1243/0954405041897130.
  • 21. Pańcikiewicz, K.; Świerczyńska, A.; Hućko, P.; Tumidajewicz, M. Laser Dissimilar Welding of AISI 430F and AISI 304 Stainless Steels. Materials 2020, 13, 4540, doi:10.3390/ma13204540.
  • 22. Skoczylas, A. Vibratory Shot Peening of Elements Cut with Abrasive Water Jet. Advances in Science and Technology Research Journal 2022, 16, 39–49, doi:10.12913/22998624/146272.
  • 23. Łatka, L.; Szala, M.; Michalak, M.; Pałka, T. Impact of Atmospheric Plasma Spray Parameters on Cavitation Erosion Resistance of Al2O3-13%TiO2 Coatings. Acta Physica Polonica A 2019, 136, 342–347, doi:10.12693/APhysPolA.136.342.
  • 24. Cui, Z.D.; Man, H.C.; Cheng, F.T.; Yue, T.M. Cavitation Erosion–Corrosion Characteristics of Laser Surface Modified NiTi Shape Memory Alloy. Surface and Coatings Technology 2003, 162, 147–153, doi:10.1016/S0257-8972(02)00399-7.
  • 25. Hattori, S.; Mikami, N. Cavitation Erosion Resistance of Stellite Alloy Weld Overlays. Wear 2009, 267, 1954–1960, doi:10.1016/j.wear.2009.05.007.
  • 26. Verma, S.; Dubey, P.; Selokar, A.W.; Dwivedi, D.K.; Chandra, R. Cavitation Erosion Behavior of Nitrogen Ion Implanted 13Cr4Ni Steel. Transactions of Indian Institute of Metals 2017, 70, 957–965, doi:10.1007/s12666-016-0887-7.
  • 27. Szala, M.; Chocyk, D.; Skic, A.; Kamiński, M.; Macek, W.; Turek, M. Effect of Nitrogen Ion Implantation on the Cavitation Erosion Resistance and Cobalt-Based Solid Solution Phase Transformations of HIPed Stellite 6. Materials 2021, 14, 2324, doi:10.3390/ma14092324.
  • 28. Szala, M.; Chocyk, D.; Turek, M. Effect of Manganese Ion Implantation on Cavitation Erosion Resistance of HIPed Stellite 6. Acta Physica Polonica A 2022, 142, 741–746, doi:10.12693/APhysPolA.142.741.
  • 29. Szala, M. Cavitation Erosion Phenomenological Model of MCrAlY and NiCrMoNbTa Metallic Coatings Deposited via the HVOF Method. Tribologia 2021, 298, 47–55, doi:10.5604/01.3001.0015.8368.
  • 30. Qiao, L.; Wu, Y.; Hong, S.; Cheng, J. Ultrasonic Cavitation Erosion Mechanism and Mathematical Model of HVOF Sprayed Fe-Based Amorphous/Nanocrystalline Coatings. Ultrasonics Sonochemistry 2019, 52, 142–149, doi:10.1016/j.ultsonch.2018.11.010.
  • 31. Wang, L.; Mao, J.; Xue, C.; Ge, H.; Dong, G.; Zhang, Q.; Yao, J. Cavitation-Erosion Behavior of Laser Cladded Low-Carbon Cobalt-Based Alloys on 17-4PH Stainless Steel. Optics & Laser Technology 2023, 158, 108761, doi:10.1016/j.optlastec.2022.108761.
  • 32. Hu, H.X.; Guo, X.M.; Zheng, Y.G. Comparison of the Cavitation Erosion and Slurry Erosion Behavior of Cobalt-Based and Nickel-Based Coatings. Wear 2019, 428–429, 246–257, doi:10.1016/j.wear.2019.03.022.
  • 33. Turek, M.; Drozdziel, A.; Pyszniak, K.; Prucnal, S.; Maczka, D.; Yushkevich, Yu.V.; Vaganov, Yu.A. Plasma Sources of Ions of Solids. Instruments and Experimantal Techniques 2012, 55, 469–481, doi:10.1134/S0020441212030062.
  • 34. Musiatowicz, M.; Turek, M.; Droździel, A.; Pyszniak, K.; Grudziński, W. Modification of Optical, Electronic and Microstructural Properties of PET by 150 KeV Cs+ Irradiation. Advances in Science and Technology Research Journal 2022, 16.
  • 35. Szala, M.; Walczak, M.; Łatka, L.; Gancarczyk, K.; Özkan, D. Cavitation Erosion and Sliding Wear of MCrAlY and NiCrMo Coatings Deposited by HVOF Thermal Spraying. Advances in Materials Science 2020, 20, 26–38, doi:10.2478/adms-2020-0008.
  • 36. ASTM G32-10: Standard Test Method for Cavitation Erosion Using Vibratory Apparatus; ASTM International: West Conshohocken, Philadelphia: PA, USA, 2010;
  • 37. Szala, M.; Walczak, M.; Hejwowski, T. Factors Influencing Cavitation Erosion of NiCrSiB Hardfacings Deposited by Oxy-Acetylene Powder Welding on Grey Cast Iron. Advances in Science and Technology Research Journal 2021, 15, 376–386, doi:10.12913/22998624/143304.
  • 38. Li, Z.X.; Zhang, L.M.; Ma, A.L.; Hu, J.X.; Zhang, S.; Daniel, E.F.; Zheng, Y.G. Comparative Study on the Cavitation Erosion Behavior of Two Different Rolling Surfaces on 304 Stainless Steel. Tribology International 2021, 159, 106994, doi:10.1016/j.triboint.2021.106994.
  • 39. Ratia, V.L.; Zhang, D.; Carrington, M.J.; Daure, J.L.; McCartney, D.G.; Shipway, P.H.; Stewart, D.A. Comparison of the Sliding Wear Behaviour of Self-Mated HIPed Stellite 3 and Stellite 6 in a Simulated PWR Water Environment. Wear 2019, 426–427, 1222–1232, doi:10.1016/j.wear.2019.01.116.
  • 40. Malayoglu, U.; Neville, A. Comparing the Performance of HIPed and Cast Stellite 6 Alloy in Liquid–Solid Slurries. Wear 2003, 255, 181–194, doi:10.1016/S0043-1648(03)00287-4.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-39bef4f2-f3b4-4aa2-9a12-0a70edc92b38
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.