Warianty tytułu
Języki publikacji
Abstrakty
A method for assessing separability of EEG signals associated with three classes of brain activity is proposed. The EEG signals are acquired from 23 subjects, gathered from a headset consisting of 14 electrodes. Data are processed by applying Discrete Wavelet Transform (DWT) for the signal analysis and an autoencoder neural network for the brain activity separation. Processing involves 74 wavelets from 3 DWT families: Coiflets, Daubechies and Symlets. Euclidean distance between clusters normalized with respect to the standard deviation of the whole set of data are used to separate each task performed by participants. The results of this stage allow for an assessment of separability between subsets of data associated with each activity performed by experiment participants. The speed of convergence of the training process employing deep learning-based clustering is also measured.
Czasopismo
Rocznik
Tom
Strony
249--268
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
- Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland
autor
- Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland
autor
- Audio Acoustics Laboratory, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland, bozena.kostek@pg.edu.pl
autor
- Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland
Bibliografia
- [1] Bashivan P, Rish I, Yeasin M, Codella N. Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks. 2015. pp. 1-15. doi:10.1080/03610928808829796. 1511.06448, URL http://arxiv.org/abs/1511.06448.
- [2] Kumar N, Kumar J. Measurement of Cognitive Load in HCI Systems Using EEG Power Spectrum: An Experimental Study. Procedia Computer Science, 2016. 84:70-78. doi:10.1016/j.procs.2016.04.068. URL http://dx.doi.org/10.1016/j.procs.2016.04.068.
- [3] Schirrmeister RT, Springenberg JT, Fiederer LDJ, Glasstetter M, Eggensperger K, Tangermann M, Hutter F, Burgard W, Ball T. Deep learning with convolutional neural networks for EEG decoding and visualization. Human Brain Mapping, 2017. 38(11):5391-5420. doi: 10.1002/hbm.23730.1703.05051.
- [4] Yildirm N, Varol A. A research on estimation of emotion using EEG signals and brain computer interfaces. 2nd International Conference on Computer Science and Engineering, UBMK 2017, 2017. pp. 1132-1136. doi:10.1109/UBMK.2017.8093523.
- [5] Zhang X, Yao L, Zhang D, Wang X, Sheng QZ, Gu T. Multi-Person Brain Activity Recognition via Comprehensive EEG Signal Analysis. 2017. doi: 10.475/123.1709.09077, URL http://arxiv.org/abs/1709.09077.
- [6] Lotte F, Congedo M, Lécuyer A, Lamarche F, Arnaldi B. A review of classification algorithms for EEG-based brain-computer interfaces. Journal of Neural Engineering, 2007. 4(2). doi:10.1088/1741-2560/4/2/R01.
- [7] Nicolas-Alonso LF, Gomez-Gil J. Brain computer interfaces, a review. Sensors, 2012. 12(2):1211-1279. doi: 10.3390/s120201211.s120201211.
- [8] Arnau-González P, Arevalillo-Herráez M, Ramzan N. Fusing highly dimensional energy and connectivity features to identify affective states from EEG signals. Neurocomputing, 2017. 244:81-89. doi:10.1016/j.neucom.2017.03.027.
- [9] Millán JDR, Franzé M, Mouriño J, Cincotti F, Babiloni F. Relevant EEG features for the classification of spontaneous motor-related tasks. Biological Cybernetics, 2002. 86(2):89-95. doi:10.1007/s004220100282.
- [10] Rosales R, Castañón-Puga M, Lara-Rosano F, Evans R, Osuna-Millan N, Flores-Ortiz M. Modelling the interruption on HCI using BDI agents with the fuzzy perceptions approach: An interactive museum case study in Mexico. Applied Sciences (Switzerland), 2017. 7(8):1-18. doi:10.3390/app7080832.
- [11] Cao X, Wipf D, Wen F, Duan G, Sun J. A practical transfer learning algorithm for face verification. Proceedings of the IEEE International Conference on Computer Vision, 2013. pp. 3208-3215. doi:10.1109/ICCV.2013.398.
- [12] Ng Hw, Nguyen VD, Vonikakis V, Winkler S. Deep Learning for Emotion Recognition on Small Datasets Using Transfer Learning. ICMI ’15 Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, 2015. pp. 443-449. doi:10.1145/2818346.2830593. URL http://dl.acm.org/citation.cfm?id=2830593.
- [13] Noroozi M, Favaro P. Unsupervised learning of visual representations by solving jigsaw puzzles. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2016. 9910 LNCS:69-84. doi: 10.1007/978-3-319-46466-4_5.1603.09246.
- [14] Wang Y, Yao H, Zhao S. Auto-encoder based dimensionality reduction. Neurocomputing, 2016. 184:232-242. doi:https://doi.org/10.1016/j.neucom.2015.08.104. RoLoD: Robust Local Descriptors for Computer Vision 2014, URL http://www.sciencedirect.com/science/article/pii/S0925231215017671.
- [15] Oliphant TE. Python for scientific computing. Computing in Science and Engineering, 2007. 9(3):10-20. doi:10.1109/MCSE.2007.58.1507.04592.
- [16] PyWavelets. Internet website of the Python library. http://pywavelets.readthedocs.io. Accessed: 2017-12-19.
- [17] Abadi M, Agarwal A, Barham P, Brvedo E, Chen Z, Citro C, Corrado G, Davis A, Dean J. TensorFlow: Large-scale machine learning on heterogeneous systems. 2015. doi:10.1038/nn.3331. arXiv:1603.04467v2, URL http://download.tensorflow.org/paper/whitepaper2015.pdf.
- [18] Al-Qazzaz N, Hamid Bin Mohd Ali S, Ahmad S, Islam M, Escudero J. Selection of Mother Wavelet Functions for Multi-Channel EEG Signal Analysis during a Working Memory Task. Sensors, 2015. 15(11):29015-29035. doi:10.3390/s151129015. URL http://www.mdpi.com/1424-8220/15/11/29015/htm.
- [19] Sanei S, Chambers JA. EEG Signal Processing, volume 1. 2007. ISBN 9780470025819. doi:10.1002/9780470511923.
- [20] Jayalakshmi T, Santhakumaran A. Statistical Normalization and Backpropagation for Classification. International Journal of Computer Theory and Engineering, 2011. 3(1):89-93. doi:10.7763/IJCTE.2011.V3.288. URL http://www.ijcte.org/papers/288-L052.pdf.
- [21] Gluege S, Boeck R, Wendemuth A. Auto-Encoder Pre-Training of Segmented-Memory Recurrent Neural Networks. European Symposium on Artificial Neural Networks, 2013. (April):29-34.
- [22] Sarroff AM, Casey M. Musical Audio Synthesis Using Autoencoding Neural Nets. Proceedings of the International Computer Music Conference, 2014. 1(September):14-20.
- [23] Wang W, Huang Y, Wang Y, Wang L. Generalized autoencoder: A neural network framework for dimensionality reduction. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2014. pp. 496-503. doi:10.1109/CVPRW.2014.79.
- [24] Helal MA, Eldawlatly S, Taher M. Using Autoencoders for Feature Enhancement in Motor Imagery Brain-Computer Interfaces. 2017 13Th Iasted International Conference on Biomedical Engineering (Biomed), 2017. pp. 89-93. doi:10.2316/P.2017.852-052.
- [25] Faust O, Acharya UR, Adeli H, Adeli A. Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. Seizure, 2015. 26:56-64. doi:10.1016/j.seizure.2015.01.012. URL http://dx.doi.org/10.1016/j.seizure.2015.01.012.
- [26] Aguinaga AR, Lopez Ramirez MA, Baltazar Flores MdR. Classification model of arousal and valence mental states by EEG signals analysis and Brodmann correlations. 2015. 6(6):230-238.
- [27] Ocak H. Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm. Signal Processing, 2008. 88(7):1858-1867. doi:10.1016/j.sigpro.2008.01.026.
- [28] Amin HU, Malik AS, Ahmad RF, Badruddin N, Kamel N, Hussain M, Chooi WT. Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques. Australasian Physical & Engineering Sciences in Medicine, 2015. 38(1):139-149. doi:10.1007/s13246-015-0333-x. URL http://link.springer.com/10.1007/s13246-015-0333-x.
- [29] Li J, Struzik Z, Zhang L, Cichocki A. Feature learning from incomplete EEG with denoising autoencoder. Neurocomputing, 2015. 165:23-31. doi:10.1016/j.neucom.2014.08.092.1410.0818, URL http://dx.doi.org/10.1016/j.neucom.2014.08.092.
- [30] Jirayucharoensak S, Pan-Ngum S, Israsena P, Jirayucharoensak S, Pan-Ngum S, Israsena P. EEG-Based Emotion Recognition Using Deep Learning Network with Principal Component Based Covariate Shift Adaptation. 2014. doi:10.1155/2014/627892,10.1155/2014/627892.
- [31] Tabar YR, Halici U. A novel deep learning approach for classification of EEG motor imagery signals. Journal of Neural Engineering, 2017. 14(1). doi:10.1088/1741-2560/14/1/016003.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-39a1230b-dcd4-45db-96cc-8c02b5a7c3c3