Czasopismo
2024
|
Vol. 36, no. 3
|
218--227
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The concentration level of urinary 8-hydroxy-20-deoxyguanosine (8-OHdG), an oxidative stress biomarker for various diseases especially cancer, has been attracted as a pathway suitable for diagnostic purposes. Determination of urinary 8-OHdG is challenging due to its low level within a complex matrix. In this study, a new approach of solid/liquid phase microextraction technique prior to high-performance liquid chromatography diode-array detection (HPLC-DAD) analysis was developed for the determination of trace levels of 8-OHdG in urine samples. The solid/liquid phase microextraction device was constructed by reinforcement of multi-walled carbon nanotubes into the pores of a short segment 2.5 cm of hollow fiber microtube with two ends heat sealed. Based on the optimized procedure, the selected analyte was extracted from an acidic sample solution (10 mL adjusted at pH 5 5) into the five extraction devices. After the extraction period (30 min), the 8-OHdG was eluted from the extraction device using methanol (350 μL) under ultrasonication for 5 min. The analytical performance of the method in synthetic urine samples showed good linearity (R2 > 0.999) with the limits of detection of 0.85 ng mL1 , and extraction recovery > 92.36%. The developed microextraction technique exhibited a confident sensitivity, feasible operation, and simplicity in comparison with other published methods and was valid to determinate trace 8-OHdG in urine cancer patients’ samples by using a cheap and commonly available HPLC-DAD instrument.
Czasopismo
Rocznik
Tom
Strony
218--227
Opis fizyczny
Bibliogr. 49 poz., rys., wykr.
Twórcy
autor
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. Box 330127, Al-Zarqa 13133, Jordan, nabil@hu.edu.jo
autor
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. Box 330127, Al-Zarqa 13133, Jordan
autor
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 150459, Al-Zarqa 13115, Jordan
autor
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
autor
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 150459, Al-Zarqa 13115, Jordan
autor
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. Box 330127, Al-Zarqa 13133, Jordan
autor
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. Box 330127, Al-Zarqa 13133, Jordan
autor
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 150459, Al-Zarqa 13115, Jordan
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 150459, Al-Zarqa 13115, Jordan
Bibliografia
- 1. Graile, M.; Wild, P.; Sauvain, J.-J.; Hemmendinger, M.; Ganu, I.; Hof, N. Urinary 8-OHdG as biomarker for oxidative stress: a systematic literature review and meta-analysis. Int. J. Mol. Sci. 2020, 21, 1–24.
- 2. Abuarrah, M.; Setianto, B.; Faisal, A.; Sadewa, A. 8-hydroxy-2-deoxyguanosine as oxidative DNA damage biomarker of medical ionizing radiation: a scoping review. J. Biomed. Phys. Eng. 2021, 11, 389–402.
- 3. Guo, C.; Li, X.; Wang, R.; Yu, J.; Ye, M.; Mao, L.; Zhang, S.; Zheng, S. Association between oxidative DNA damage and risk of colorectal cancer: sensitive determination of urinary 8-hydroxy-20-deoxyguanosine by UPLC-MS/MS Analysis. Sci. Rep. 2016, 6, 1–9.
- 4. Li, J.; Zhang, D.; Ramos, K.; Baks, L.; Wiersma, M.; Lanters, E.; Bogers, A.; de Groot, N.; Brundel, B. Blood-based 8-hydroxy-20-deoxyguanosine level: a potential diagnostic biomarker for atrial fibrillation. Heart Rhythm 2021, 18, 271–7.
- 5. Sajous, L.; Botta, A.; Sari-Minodier, I. Urinary 8-hydroxy-2’-deoxyguanosine: a biomarker of environmental oxidative stress? Ann. Biol. Clin. (Paris) 2008, 66, 19–29.
- 6. Valavanidis, A.; Vlachogianni, T.; Fiotakis, C. 8-hydroxy-2-deoxyguanosine (8-OHdG): a critical of oxidative stress and carcinogenesis. J. Environ. Sci. Heal. C. 2009, 27, 120–39.
- 7. Qing, X.; Shi, D.; Xia, L.; Wang, B.; Chen, S.; Shao, Z. Prognostic significance of 8-hydroxy-20-deoxyguanosine in solid tumors: a meta-analysis. BMC Cancer 2019, 19, 1–15.
- 8. Gmitterová, K.; Heinemann, U.; Gawinecka, J.; Varges, D.; Ciesielczyk, B.; Valkovic, P.; Benetin, J.; Zerr, I. 8-OHdG in cerebrospinal fluid as a marker of oxidative stress in various neurodegenerative diseases. Neurodegener Dis. 2009, 6, 263–9.
- 9. Al-Aubaidy, H.; Jelinek, H. Oxidative DNA damage and obesity In type 2 diabetes mellitus. Eur. J. Endocrinol. 2011, 164, 899–904.
- 10. Medhat, D.; El-mezayen, H.; El-Naggar, M.; Farrag, A.; Abdelgawad, M.; Hussein, J. Evaluation of urinary 8-hydroxy-20-deoxyguanosine level in experimental Alzheimer’s disease: impast of carvacrol nanoparticles. Mol. Biol. Rep. 2019, 46, 4517–27.
- 11. Minno, A.; Turnu, L.; Porro, B.; Squellerio, I.; Cavalca, V.; Tremoli, E.; Minno, M. 8-hydroxy-2-deoxyguanosine levels and heart failure: a systematic review and meta-analysis of the literature. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 201–8.
- 12. Minno, A.; Turnu, L.; Porro, B.; Squellerio, I.; Cavalca, V.; Tremoli, E.; Minno, M. 8-hydroxy-2-deoxyguanosine levels and cardiovascular disease: a systematic review and meta-analysis of the literature. Antioxid. Redox Signal. 2016, 24, 548–55.
- 13. Shen, J.; Deininger, P.; Hunt, J.; Zhao, H. 8-hydroxy-20-deoxyguanosine (8-OH-dG) as a potential survival biomarker in patient with nonsamall-cell lung cancer. Cancer 2007, 109, 574–80.
- 14. Akcay, T.; Saygili, I.; Andican, G.; Yalçin, V. Increased formation of 8-hydroxy-20-deoxyguanosine in peripheral blood leukocytes In bladder cancer. Urol. Int. 2003, 71, 271–4.
- 15. Miyake, H.; Hara, I.; Kamidono, S.; Eto, H. Oxidative DNA damage in patients with prostate cancer and its response to treatment. J. Urol. 2004, 171, 1533–6.
- 16. Mohamed, E.; Eldin-Mahmoud, N.; El-Read, M.; Eldein, M.; Alfalki, A.; Althubiti, M.; Kamel, H.; Eid, S.; Al-Amodi, H.; Mirza, A. 8-hydroxy-20-deoxyguanosine as a discriminatory biomarker for early detection of breast cancer. Clin. Breast Cancer 2019, 19, e385–93.
- 17. Staden, B.-I.; Balahura, L.-R.; Gugoasa, L.; van Staden, J.; Aboul-Enein, H.; Rosu, M.-C.; Pruneanu, S. Pattern recognition of 8-hydroxy-20-deoxyguanosine in biological fluids. Anal. Bioanal. Chem. 2018, 410, 115–21.
- 18. Breton, J.; Sichel, F.; Bianchini, F.; Prevost, V. Measurement of 8-hydroxy-20-deoxyguanosine a commercially available ELISA test: comparisonwithHPLC/electrochemical detection inCalf ThymusDNAand determination in human serum. Anal. Lett. 2003, 36, 123–34.
- 19. Morgil, G.; Çok, I. Development and validation of a fast and Simple LC-ESI MS/MS method for quantitative analysis 8-hydroxy-20-deoxyguanosine (8-OHdg) in human urine. FABAD J. Pharm. Sci. 2020, 45, 125–34.
- 20. Dizdaroglu, M.; Jaruga, P.; Rodriguez, H. Measurement of 8-hydroxy-20-deoxyguanosine in DNA by high-performance liquid chromatography-mass spectrometry: comparison with measurement by gas chromatography-mass spectrometry. Nucleic Acids Res. 2001, 29, 1–8.
- 21. Zhang, S.; Zou, C.; Luo, N.; Weng, Q.; Cai, L.; Wu, C.; Xing, J. Determination of urinary 8-hydroxy-20-deoxyguanosine by capillary electrophoresis with molecularly imprinted monolith in-tube solid phase microextraction. Chin. Chem. Lett. 2010, 21, 85–8.
- 22. De Martinis, B.; Bianchi, M. Methodology for urinary 8-hydroxy-20-deoxyguanosine analysis by HPLC with electrochemical detection. Pharmacol. Res. 2022, 46, 129–31.
- 23. Rosier, J.; Van Peteghem, C. Determination of trace amounts of 8-hydroxy-2-deoxyguanosine in commercial 2-deoxyguanosine by means of HPLC analysis and electro-chemical analysis. J. Liq. Chromatogr. 1988, 11, 1293–8.
- 24. Zhang, S.-W.; Xing, J.; Cai, L.-S.; Wu, C.-Y. Molecularly imprinted monolith in-tube solid-phase microextraction coupled with HPLC/UV detection for determination of 8-hydroxy-20-deoxyguanosine In urine. Anal. Bioanal. Chem. 2009, 395, 479–87.
- 25. Saito, A.; Hamano, M.; Kataoka, H. Simultaneous analysis of multiple urinary biomarkers for the evaluation of oxidative stress by automated online in-tube solid-phase microextraction coupled with negative/positive ion-switching mode liquid chromatographytandem mass spectrometry. J. Sep. Sci. 2018, 41, 2743–9.
- 26. Rezaeifar, Z.; Es’haghi, Z.; Rounaghi, G.; Chamsaz, M. Hyperbranched polyglycerol/graphene oxide nanocomposite reinforced hollow fiber solid/liquid phase microextraction for measurement of ibuprofen and naproxen in hair and waste water samples. J. Chromatogr. B. 2016, 1029, 81–7.
- 27. Al-Hashimi, N.; Shahin, R.; Al-Hashimi, A.; Ajeal, A.; Tahtamouni, L.; Basheer, C. Cetyl-alcohol-reinforced hollow fiber solid/liquid-phase microextraction and HPLC-DAD analysis of ezetimibe and simvastatin in human plasma and urine. Biomed. Chromatogr. 2019, 33, 1–8.
- 28. Trojanowicz, M. Analytical application of carbon nanotubes: a review. Trends Analyt. Chem. 2006, 25, 480–9.
- 29. Oliveira, T.; Morais, S. New Generation of electrochemical sensors based on multi-walled carbon nanotube. Appl. Sci. 2018, 8, 1–18.
- 30. Song, X.-Y.; Shi, Y.-P.; Chen, J. A novel extraction technique based on carbon nanotubes reinforced hollow fiber solid/liquid microextraction for the measurement of piroxicam and diclofenac combined with high performance liquid chromatography. Talanta 2012, 100, 153–61.
- 31. Hamedi, R.; Hadjmohammadi, M. Optimization of multiwalled carbon nanotube reinforced hollow-fiber solid-liquid-phase microextraction of polycyclic aromatic hydrocarbons in environmentalwater samples using experimental design. J. Sep. Sci. 2017, 40, 3497–505.
- 32. Al-Hashimi, N.; Awwad, A.; Al-Hashimi, A.; Mansi, I.; Shahin, R.; Hamed, S. Functionalized multi walled carbon nanotubes reinforced hollow fiber solid/liquid phase microextraction and HPLCDAD for determination of phenazopyridine in urine. Curr. Pharm. Anal. 2019, 15, 447–55.
- 33. El-Sheikh, A.; Insisi, A.; Sweileh, J. Effect of oxidation and dimensions of multi-walled carbon nanotubes on solid phase extraction and enrichment of some pesticides from environmental Walters prior to their simultaneous determination by high performance liquid chromatography. J. Chromatogr. A. 2007, 1164, 25–32.
- 34. El-Sheikh, A.; Newman, A.; Al-Daffaee, H.; Phull, S.; Cresswell, N. Characterization of activated carbon prepared from single cultivar Jordanian olive stones. J. Anal. Appl. Pyrolysis 2004, 71, 151–64.
- 35. Boehm, H. Surface oxides on carbon and their analysis: a critical assessment. Carbon 2002, 40, 145–9.
- 36. Allen, R.; Baldini, N.; Donofrio, P.; Gutman, E.; Keefe, E.; Kramer, J.; Leinweber, C.; Mayer, V. Annual Book of ASTM Standards; American Society for Testing and Materials: Easton, 1996.
- 37. Suna, Y.; Xieb, L.; Fenga, F.; Hana, Q.; Weib, L.; Tangb, Z.; Kang, X. Simultaneous analysis of two urinary biomarkers of oxidative damage to DNA and RNA based on packed-fiber solid chase extraction coupled with high-performance liquid chromatography.J. Chromatogr. B. 2020, 1159, 1–8.
- 38. Stobinski, L.; Lesiaka, B.; Kover, L.; Tothc, J.; Biniak, S.; Trykowski, G.; Judek, J. Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and elektron spectroscopy methods. J. Alloys Compound 2010, 501, 77–84.
- 39. Badiee, H.; Zanjanchi, M.; Zamani, A.; Fashi, A. Solvent bar microextraction technique with three-hollow fiber configuration for trace determination of nitrite in river water samples. Environ. Sci. Pollut. Res. 2019, 26, 32967–76.
- 40. Wang, J.; Weng, P.; Zhou, J.; Zhang, X.; Cui, S. Carrier-mediated solvent bar microextraction coupled with HPLC-DAD for the quantitative analysis of the hydrophilic antihypertensive peptide VLPVPR in human plasma. Anal. Methods 2017, 10, 69–75.
- 41. Kaushal, C.; Srivastava, B. A process of method development: a chromatographic approach. J. Chem. Res. 2010, 2, 519–45.
- 42. Smallwood, M. Handbook of Organic Solvent Properties; Arnold: London, 1996.
- 43. Gupta, V.; Shrivastava, A. Methods for the determination of limit of detection and limit of quantification of the analytical methods. Chron. Young Sci. 2011, 2, 21–5.
- 44. Gan, H.; Xu, H. A novel aptamer-based online magnetic solid chase extraction method for the selective determination of 8-hydroxy-20-deoxyguanosine in human urine. Anal. Chim. Acta 2018, 1008, 48–56.
- 45. Fan, R.; Wang, D.; Ramage, R.; She, J. Fast and simultaneous determination of urinary 8-hydroxy-20-deoxyguanosine and ten monohydroxylated polycyclic aromatic hydrocarbon by liquid chromatography/tandem mass spectrometry. Chem. Res. Toxicol. 2012, 25, 491–9.
- 46. Petru, K.; Siroká, J.; Bydzovská, L.; Krcmová, L.; Polášek, M. Assay of urinary 8-hydroxy-20-deoxyguanosine by capillary electrophoresis with spectrophotometric detection using a high-sensitivity detection cell and solid-phase extraction. Electrophoresis 2014, 35, 2546–9.
- 47. Chen, C.; Jhou, Y.-T.; Lee, H.-L.; Lin, Y. Simultaneous, rapid, and sensitive quantification of 8-hydroxy-20-deoxyguanosine and cotinine in human urine by on-line solid-phase extraction LC-MS/MS: correlation with tobacco exposure biomarkers NNAL. Anal. Bioanal. Chem. 2016, 408, 6295–306.
- 48. Li, Z.; Yao, Y.; Zhang, Y.; Zhang, Y.; Shao, Y.; Tang, C. Classification and temporal variability in urinary 8-oxodG and 8-oxoGuo: analysis by UPLC-MS/MS. Sci. Rep. 2019, 9, 1–9.
- 49. Mendes, B.; Silva, P.; Mendonça, I.; Pereira, J.; Câmara, J. A New and fast methodology to assess oxidative damage in cardiovascular diseases risk development through eVol-MEPS-UPLC analysis of four urinary biomarkers. Talanta 2013, 116, 164–72.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-399931fb-ca24-45a1-9f75-78f9d2ccc338