Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 23, iss. 3 | 74--87
Tytuł artykułu

Morphology and Distribution of α-Al and Mn-rich Phases in Al-Si-Mn Alloys under an Electromagnetic Stirring

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Convection caused by gravity and forced flow are present during casting. The effect of forced convection generated by a rotating magnetic field on the microstructure and precipitating phases in eutectic and hypoeutectic AlSiMn alloys was studied in solidification by a low cooling rate and low temperature gradient. The chemical composition of alloys was selected to allow joint growth or independent growth of occurring α-Al, α-Al15Si2Mn4 phases and Al-Si eutectics. Electromagnetic stirring caused instead of equiaxed dendrites mainly rosettes, changed the AlSi eutectic spacing, decreased the specific surface Sv and increased secondary dendrite arm spacing λ2 of α-Al, and modified the solidification time. Forced flow caused complex modification of pre-eutectic and inter-eutectic Mn-phases (Al15Si2Mn4) depending on the alloy composition. By high Mn content, in eutectic and hypoeutectic alloys, stirring caused reduction in the number density and a decrease in the overall dimension of pre-eutectic Mn-phases. Also across cylindrical sample, specific location of occurring phases by stirring was observed. No separation effect of Mn-phases by melt flow was observed. The study provided an understanding of the forced convection effect on individual precipitates and gave insight of what modifications can occur in the microstructure of castings made of technical alloys with complex composition.
Wydawca

Rocznik
Strony
74--87
Opis fizyczny
Bibliogr. 51 poz., il., tab., wykr.
Twórcy
Bibliografia
  • [1] Mondolfo, L.F. (1976). Aluminium alloys: structure and properties. Butterworths & Co.: London, UK.
  • [2] Glazoff, M.V., Zolotorevsky, V.S., Belov, N.A. (2007). Casting aluminum alloys. Elsevier Science Pub Co.: Amsterdam, The Netherlands. ISBN-10:0080453708, ISBN-13:978-0080453705. https://doi.org/10.1016/B978-0-08-045370-5.X5001-9.
  • [3] Mikolajczak P., Ratke L. (2014). Three dimensional morphology of mn rich intermetallics in AlSi alloys investigated with X-Ray tomography. Materials Science Forum - Solidification and Gravity SolGrav VI., Miskolc. 790-791, 335-340. https://doi.org/10.4028/www.scientific.net/MSF.790-791.335.
  • [4] Flemings, M. (1991). Behavior of metal alloys in the semisolid state. Metallurgical. Transaction. B. 22, 269-293. https://doi.org/10.1007/BF02651227.
  • [5] Modigell, M., Pola, A. & Tocci, M. (2018). Rheological characterization of semi-solid metals: a review. Metals. 8(4), 245, 1-23. https://doi.org/10.3390/met8040245.
  • [6] Nafisi, S., Ghomashchi, R. (2016). Semi-Solid Processing of Aluminum Alloys. Springer: Berlin, Germany. ISBN: 978-3-319-40333-5, DOI:10.1007/978-3-319-40335-9.
  • [7] Beil, W.L., Brollo, G.L. & Zoqui, E.J. (2021). A continuous casting device with electromagnetic stirring for production of ssm feedstock using Al-Si alloys. Materials Research. 24(3). https://doi.org/10.1590/1980-5373-MR-2020-0584.
  • [8] Pacheco, M.G. (2017). Electromagnetic processing of molten light alloys reinforced by micro/nanoparticles. Ph.D. Thesis, Universite Grenoble Alpes UGA, Grenoble, France, 13 March.
  • [9] Lazaro-Nebreda, J., Patel, J.B. & Fan, Z. (2021). Improved degassing efficiency and mechanical properties of A356 aluminum alloy castings by high shear melt conditioning (HSMC) technology. Journal of Materials Processing Technology. 294, 117146, 1-12. https://doi.org/10.1016/j.jmatprotec.2021.117146.
  • [10] Li, M., Murakami, Y., Matsui, I., Omura, N. & Tada, S. (2018). Imposition time dependent microstructure formation in 7150 aluminum alloy solidified by an electromagnetic stirring technique. Materials Transactions. 59(10), 1603-1609. https://doi.org/10.2320/matertrans.M2017357.
  • [11] Jin, C.K. (2018). Microstructure of semi-solid billets produced by electromagnetic stirring and behavior of primary particles during the indirect forming process. Metals. 8(4), 271, 1-15. https://doi.org/10.3390/met8040271.
  • [12] Mikolajczak, P., Janiszewski, J., Jackowski, J. (2019). Construction of the facility for aluminium alloys electromagnetic stirring during casting. In Gapiński B., Szostak M., Ivanov V. (Eds.). Advances in manufacturing II. Vol. 4. Mechanical Engineering (pp. 164-175). Cham, Switzerland, Springer. https://doi.org/10.1007/978-3-030-16943-5_15.
  • [13] Mikolajczak, P. (2023). Distribution and morphology of α-Al, Si and Fe-Rich phases in Al–Si-Fe alloys under an electromagnetic field. Materials. 16(9), 3304, 1-31. https://doi.org/10.3390/ma16093304.
  • [14] Mikolajczak, P. (2017). Microstructural evolution in AlMgSi alloys during solidification under electromagnetic stirring. Metals. 7(3), 89, 1-16. https://doi.org/10.3390/met7030089.
  • [15] Mikolajczak, P. (2021). Effect of rotating magnetic field on microstructure in AlCuSi alloys. Metals. 11(11), 1804, 1-23. https://doi.org/10.3390/met11111804.
  • [16] Mikolajczak, P., Genau, A. & Ratke, L. (2017). mushy zone morphology calculation with application of CALPHAD technique. Metals. 7(9), 363, 1-19. https://doi.org/10.3390/met7090363.
  • [17] Mikolajczak, P., Genau, A., Janiszewski, J. & Ratke, L. (2017). Thermo-Calc prediction of mushy zone in AlSiFeMn alloys. Metals. 7(11), 506, 1-21. https://doi.org/10.3390/met7110506.
  • [18] Belov, N.A., Aksenov, A.A., Eskin, D.G. (2002). iron in aluminium alloys-impurity and alloying element. 1st ed., Taylor and Francis Group: London, UK,. https://doi.org/10.1201/9781482265019.
  • [19] Shabestari, S.G. (2004). The effect of iron and manganese on the formation of intermetallic compounds in aluminum-silicon alloys. Materials Science and Engineering: A. 383, 289-298. https://doi.org/10.1016/j.msea.2004.06.022.
  • [20] Thermo-Calc 4.1 - Software package from Thermo-Calc Software AB. Stockholm. Sweden. Retrieved 5 May 2023 from: www.thermocalc.se.
  • [21] Das, A., Ji, S. & Fan, Z. (2002). Morphological development of solidification structures under forced fluid flow: A Monte Carlo simulation. Acta Materialia. 50(18), 4571-4585. https://doi.org/10.1016/S1359-6454(02)00305-1.
  • [22] Li, T., Lin, X. & Huang, W. (2006). Morphological evolution during solidification under stirring. Acta Materialia. 54(18), 4815-4824. https://doi.org/10.1016/j.actamat.2006.06.013.
  • [23] Martinez. R.A. & Flemings, M.C. (2005). Evolution of particle morphology in semisolid processing. Metallurgical and Materials Transactins A. 36, 2205-2210. https://doi.org/10.1007/s11661-005-0339-1.
  • [24] Niroumand, B. & Xia, K. (2000). 3D study of the structure of primary crystals in a rheocast Al-Cu alloy. Materials Science and Engineering: A. 283(1-2), 70-75.
  • [25] Mendoza, R., Alkemper, J., Voorhees, P. (2003). The morphological evolution of dendritic microstructures during coarsening. Metallurgical and Materials Transactions A. 34, 481-489. https://doi.org/10.1007/s11661-003-0084-2.
  • [26] Kurz, W.D. Fisher, (1992). Fundamentals of Solidification. Trans Tech Public: Bäch, Switzerland, 85-90.
  • [27] Dantzig, J.A., Rappaz, M. (2009). Solidification. EPFL Press: Lausanne, Switzerland. ISBN 9780849382383.
  • [28] Stefanescu, D. (2009). Science and Engineering of Casting and Solidification. Springer: Boston, MA, USA. ISBN 978-0-387-74609-8. https://doi.org/10.1007/b135947.
  • [29] Wang, C.Y. & Beckermann, C. (1996). Equiaxed dendritic solidification with convection: Part II. numerical simulations for an Al-4 Wt Pct Cu Alloy. Metallurgical and Materials Transactions A. 27A, 2765-2783. https://doi.org/10.1007/BF02652370.
  • [30] Kattamis, T.Z., Flemings, M.C. (1965). Dendrite morphology. Microsegregation and Homogenization of low alloy steel. Transactions of the Metallurgical Society of AIME. 233(5), 992-999.
  • [31] Rappaz, M. & Boettinger, W. (1999). On dendritic solidification of multicomponent alloys with unequal liquid diffusion coefficients. Acta Materialia. 47(11), 3205-3219. https://doi.org/10.1016/S1359-6454(99)00188-3.
  • [32] Bouchard, D. & Kirkaldy, J.S. (1997). Prediction of dendrite arm spacing in unsteady- and steady-state heat flow. Metallurgical and Materials Transactions B. 28, 651-663.https://doi.org/10.1007/s11663-997-0039-x.
  • [33] Mortensen, A. (1991). On the rate of dendrite arm coarsening. Metallurgical Transactions A. 22, 569-574. https://doi.org/10.1007/BF02656824.
  • [34] Voorhees, P.W. & Glicksman, M.E. (1984). Ostwald ripening during liquid phase sintering-Effect of volume fraction on coarsening kinetics. Metallurgical Transactions A. 15, 1081-1088. https://doi.org/10.1007/BF02644701.
  • [35] Ferreira, A.F., Castro, J.A., Ferreira, L.O. (2017). Predicting secondary-dendrite arm spacing of the Al-4.5wt%Cu alloy during unidirectional solidification. Materials Research. 20(1), 68-75. https://doi.org/10.1590/1980-5373-MR-2015-0150.
  • [36] Mullis, A.M. (2003). The effects of fluid flow on the secondary arm coarsening during dendritic solidification. Journal of Materials Science. 38, 2517-2523. https://doi.org/10.1023/A:1023977723475.
  • [37] Steinbach, S. & Ratke, L. (2007). The influence of fluid flow on the microstructure of directionally solidified AlSi-base alloys. Metallurgical and Materials Transactions A. 38, 1388-1394. https://doi.org/10.1007/s11661-007-9162-1.
  • [38] Ratke, L. & Thieringer, W.K. (1985). The influence of particle motion on ostwald ripening in liquids. Acta Matallurgica. 33, 1793-1802. https://doi.org/10.1016/0001-6160(85)90003-3.
  • [39] Kasperovich, G., Genau, A., Ratke, L. (2011). Mushy zone coarsening in an AlCu30 alloy accelerated by a rotating magnetic field. Metallurgical and Materials Transactions A. 42, 1657-1666. https://doi.org/10.1007/s11661-010-0542-6.
  • [40] Diepers, H.J., Beckerman, C. & Steinbach, I. (1999). Simulation of convection and ripening in a binary alloy mush using the phase field method. Acta Materialia. 47(13), 3663-3678. https://doi.org/10.1016/S1359-6454(99)00239-6.
  • [41] Marsh, S.P. & Glicksman, M.E. (1996). Overview of geometric effects on coarsening of mushy zones. Metallurgical and Materials Transactions A. 27, 557-567. https://doi.org/10.1007/BF02648946.
  • [42] Loué, W.R. & Suéry, M. (1995). Microstructural evolution during partial remelting of AlSi7Mg alloys. Materials Science and Engineering: A. 203(1-2), 1-13. https://doi.org/10.1016/0921-5093(95)09861-5.
  • [43] Jackson, K.A. & Hunt, J.D. (1966). Lamellar and rod eutectic growth. Transactions of the Metallurgical Society of AIME. 236, 1129-1142.
  • [44] Sous, S. (2000). Instationäre Erstarrung Eutektischer Al-Si Legierungen. Ph.D. Thesis, RWTH, Aachen, Germany.
  • [45] Ren Z. & Junze J. (1992). Formation of a separated eutectic in Al-Si eutectic alloy. Journal of Materials Science. 27, 4663-4666. https://doi.org/10.1007/BF01166003.
  • [46] Mikolajczak, P. & Ratke, L. (2015). Thermodynamic assessment of mushy zone in directional solidification. Archives of foundry Engineering. 15(4), 101-109. DOI:10.1515/afe-2015-0088.
  • 47] Fang, X., Shao, G., Liu, Y.Q. & Fan, Z. (2007). Effects of intensive forced melt convection on the mechanical properties of Fe containing Al-Si based alloys. Material Science and Engineering: A. 445-446, 65-72. https://doi.org/10.1016/j.msea.2006.09.038.
  • [48] Nafisi, S., Emad, D., Shehata, T. & Ghomashchi, R. (2006). Effects of electromagnetic stirring and superheat on the microstructural characteristics of Al-Si-Fe alloy. Materials Science and Engineering A. 432(1-2), 71-83. https://doi.org/10.1016/j.msea.2006.05.076.
  • [49] Steinbach, S., Euskirchen, N., Witusiewicz, V., Sturz, L. & Ratke, L. (2007). Fluid flow effects on intermetallic phases in Al-cast alloys. Transactions of Indian Institute of Metals. 60(2), 137-141.
  • [50] Mikolajczak, P. & Ratke, L. (2013). Effect of stirring induced by rotating magnetic field on β-Al5FeSi intermetallic phases during directional solidification in AlSi alloys. International Journal of Cast Metals Research. 26, 339-353. https://doi.org/10.1179/1743133613Y.0000000069.
  • [51] Mikolajczak, P. & Ratke, L. (2011). Intermetallic phases and microstructure in AlSi alloys influenced by fluid flow. Supplemental Proceedings: General Paper Selections. 3, 825-832. DOI:10.1002/9781118062173.ch104.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-398151d0-06dc-46ba-9de1-5f045f370c3d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.