Czasopismo
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
This work is concerned with the following nonlinear second order delay differential equations x′′(t)+p(t)x′(t)+q(t)x(t) = f(t, x(t), x(t−τ (t)), x′(t−τ (t))), t ∈ R, which includes many key second order delay differential equations that arise in nonlinear analysis and its applications. We use Perov’s fixed point theorem to prove the existence and uniqueness of periodic solutions for second order delay differential equations. Our results are obtained under general assumptions.
Czasopismo
Rocznik
Tom
Strony
13--23
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
- Laboratory of Applied Mathematics and Didactics, Ecole Normale Supérieure de Constantine, Constantine-Algeria, bellourazze123@yahoo.com
autor
- Department of Mathematics, Ecole Normale Supérieure de Skikda, benhiounasalah@yahoo.fr
- Laboratory of Applied Mathematics and Didactics, Ecole Normale Supérieure de Constantine, Constantine-Algeria
autor
- Department of Mathematics, Université Badji Mokhtar, Annaba-Algeria, rrachida-2000@yahoo.fr
Bibliografia
- [1] Aghajani A., Pourhadi E., Rivero M., Trujillo J. J., Application of Perov’s fixed point theorem to Fredholm type integro-differential equations in two variables, Math. Slovaca, 66(5) (2016), 1207-1216.
- [2] Aghajani A., Djoudi A., Existence of positive periodic solutions for a nonlinear neutral differential equation with variable delay, Appl. Math. E-Notes, (12)(2) (2012), 94-101.
- [3] Aghajani A., Djoudi A., The existence of periodic solutions for a second order nonlinear neutral differential equation with functional delay, Electron. J. Qual. Theory Differ. Equ., (31)(2) (2012), 1-9.
- [4] Aghajani A., Djoudi A., Periodic solutions for a second-order nonlinear neutral differential equation with variable delay, Electron. J. Differential Equations, 11(128) (2011), 1072-6691.
- [5] Bellour A., Ait Dads E., Periodic solutions for nonlinear neutral Delay intgro-differential equations, Electron. J. Differential Equations, 100 (2015), 1072-6691.
- [6] Bica A. M., Mureşan S., Parameter dependence of the solution of a delay integro-differential equation arising in infectious diseases, Fixed Point Theory, 6 (2005), 79-89.
- [7] Egri E., A boundary value problem for a system of iterative functional-differential equations, Carpathian J. Math., 24(1) (2008), 23-36.
- [8] Freedman H. I., Wu J., Periodic solutions of single-species models with periodic delay, SIAM J. Math. Anal., 23(2) (1992), 689-701.
- [9] Kuang Y., Delay Differential Equations with Application in Population Dynamics, Academic Press, New York, 1993.
- [10] Liu Y., Ge W., Positive periodic solutions of nonlinear Duffing equations with Delay and variable coefficients, Tamsui Oxf. J. Math. Sci., 20(2) (2004), 235-255.
- [11] Perov A. I., Kibenko A. V., On a general method to study the boundary value problems, Iz. Akod. Nank., 30(1966), 249-264.
- [12] Wang Y., Lian H., Ge W., Periodic solutions for a second nonlinear functional differential equation, Appl. Math. Lett., 20(2) (2007), 110-115.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-397a0d94-3811-4ec2-974d-a12eb33b44f2