Czasopismo
2004
|
Vol. 24, Fasc. 2
|
433--442
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Let (Xn, n ≥ 1) be a sequence of independent identically distributed random variables with a common distribution function F and let Sn = ∑nj = 1, n ≥ 1. When F belongs to the domain of partial attraction of a semistable law with index α, 0 < α < 2, Chover’s form of the law of the iterated logarithm has been obtained for subsequences of (Sn), along with some boundary crossing problems.
Czasopismo
Rocznik
Tom
Strony
433--442
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
- Department of Statistics, Room No 109, Faculty of Science, Addis Ababa University, Post Box No 1176, Addis Ababa, Ethiopia, divan@stat.aau.edu.et
Bibliografia
- [1] J. Chover, A law of the iterated logarithm for stable summands, Proc. Amer. Math. Soc. 17 (1966), pp. 441-443.
- [2] G. Divanji and R. Vasudeva, Tail behavior of distributions in the domain of partial attraction on some related iterated logarithm laws, Sankhyā Ser. A 51 (2) (1989), pp. 196-204.
- [3] A. Gut, Law of the iterated logarithm for subsequences, Probab. Math. Statist. 7 (1986), pp. 27-58.
- [4] C. C. Heyde, On large deviation problems for sums of random variables which are not attracted to the normal law, Ann. Math. Statist 38 (1967), pp. 1575-1578.
- [5] V. M. Kruglov, On the extension of the class of stable distributions, Theory Probab. Appl. 17 (1972), pp. 685-694.
- [6] R. Schwabe and A. Gut, On the law of the iterated logarithm for rapidly increasing subsequences, Math. Nachr. 178 (1996), pp. 309-332.
- [7] E. Seneta, Regularly Varying Functions, Lecture Notes in Math. No 508, Springer, Berlin 1976.
- [8] J. Slivka, On the LIL, Proc. Nat. Acad. Sci. U.S.A. 63 (1969), pp. 2389-2391.
- [9] J. Slivka and N. C. Savero, On the strong law of large numbers, Proc. Amer. Math. Soc. 24 (1970), pp. 729-734.
- [10] I. Torrång, Law of the iterated logarithm - cluster points of deterministic and random subsequences, Probab. Math. Statist. 8 (1987), pp. 133-141.
- [11] R. Vasudeva, Chover's law of iterated logarithm and weak convergence, Acta Math. Hungar. 44 (3-4) (1984), pp. 215-221.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-397641d0-a058-4ec9-8364-f11461a2ceeb