Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | R. 96, nr 2 | 182--187
Tytuł artykułu

Modeling and control of photovoltaic system using sliding mode controle, comparative studies with conventional controls

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Modelowanie i sterowanie systeme fotowoltaicznym metodą ślizgową – porówanie z systemami konwencjonalnymi
Języki publikacji
EN
Abstrakty
EN
The case studied in this paper relates to the control of a system photovoltaic. As the output characteristic of a photovoltaic (PV) module is nonlinear and changes with solar irradiance and the load, its maximum power point (MPP) is not constant. Therefore, a (MPPT) technique is needed to draw peak power from the PV module to maximize the produced energy and voltage delivered by the PV system constant under varying conditions. In our study, we used two MPPT algorithms, the algorithm “Perturb and Observe” (P & O), then the algorithm “Increment of Conductance” (IncCond). For this, a control system is presented. The methods used for the simulation of this system are based on the use of a sliding mode control. Simulation results are presented to verify the simplicity, the stability and the robustness of this control technique against changes in weather conditions.
PL
Przypadek opisany w tym artykule dotyczy kontroli fotowoltaiki systemowej. Ponieważ charakterystyka wyjściowa modułu fotowoltaicznego (PV) jest nieliniowa i zmienia się wraz z natężeniem promieniowania słonecznego i obciążeniem, jego maksymalna wartość mocy (MPP) nie jest stała. Dlatego technika (MPPT) jest potrzebna do pobrania mocy szczytowej z modułu fotowoltaicznego w celu zmaksymalizowania wytworzonej energii i napięcia dostarczanego przez stałą systemu PV w różnych warunkach. W naszym badaniu wykorzystaliśmy dwa algorytmy MPPT, algorytm "Perturb and Observe" (P & O), a następnie algorytm "Increment of Conductance" (IncCond). W tym celu przedstawiono system kontroli. Metody użyte do symulacji tego systemu opierają się na zastosowaniu sterowania w trybie ślizgowym. Przedstawiono wyniki symulacji, aby zweryfikować prostotę, stabilność i odporność tej techniki sterowania przed zmianami warunków pogodowych.
Wydawca

Rocznik
Strony
182--187
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
  • Applied Power Electronics Laboratory Oran University of Science and Technology - Mohamed Boudiaf, hachemiaek@ymail.com
Bibliografia
  • [1] A. Durgadevi, S. Arulselvi, and S. P. Natarajan, “Photovoltaic modeling and its characteristics," 2011 International Conference on Emerging Trends in Electrical and Computer Technology, Mar. 2011.
  • [2] S. Ould-Amrouche, D. Rekioua, and A. Hamidat, “Modelling photovoltaic water pumping systems and evaluation of their CO2 emissions mitigation potential," Applied Energy, vol. 87, no. 11, pp. 3451-3459, Nov. 2010.
  • [3] V. Suganya, S.Vijayalakshmi, KR.Vairamani, K. Anudheebha, A.R. Danila Shirly“Solar Powered Battery Charger Using Sliding Mode Controller," International Journal of Engineering Science and Computing, March
  • [4] S. Lalouni, D. Rekioua, T. Rekioua, and E. Matagne, “Fuzzy logic control of stand-alone photovoltaic system with battery storage," Journal of Power Sources, vol. 193, no. 2, pp. 899- 907, Sep. 2009.
  • [5] S. Zhou, L. Kang, J. Sun, G. Guo, B. Cheng, B. Cao, and Y. Tang, “A novel maximum power point tracking algorithms for stand-alone photovoltaic system," International Journal of Control, Automation and Systems, vol. 8, no. 6, pp. 1364-1371, Dec. 2010.
  • [6] A. Yazdani and P. P. Dash, “A Control Methodology and Characterization of Dynamics for a Photovoltaic (PV) System Interfaced With a Distribution Network," IEEE Transactions on Power Delivery, vol. 24, no. 3, pp. 1538-1551, Jul. 2009.
  • [7] V. Salas, E. Olías, A. Barrado, and A. Lázaro, “Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems," Solar Energy Materials and Solar Cells, vol. 90, no. 11, pp. 1555-1578, Jul. 2006.
  • [8] H.-L. Jou, W.-J. Chiang, and J.-C. Wu, “A Novel Maximum Power Point Tracking Method for the Photovoltaic System," 2007 7th International Conference on Power Electronics and Drive Systems, Nov. 2007
  • [9] J. Qi, Y. Zhang, and Y. Chen, “Modeling and maximum power point tracking (MPPT) method for PV array under partial shade conditions," Renewable Energy, vol. 66, pp. 337-345, Jun. 2014.
  • [10] Weidong Xiao and W. G. Dunford, “A modified adaptive hill climbing MPPT method for photovoltaic power systems," 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551).
  • [11] H. Al-Atrash, I. Batarseh, and K. Rustom, “Statistical modeling of DSP-based Hill-climbing MPPT algorithms in noisy environments," Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005.
  • [12] T. Esram and P. L. Chapman, “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques," IEEE Transactions on Energy Conversion, vol. 22, no. 2, pp. 439- 449, Jun. 2007.
  • [13] G. Petrone, C. A. Ramos-Paja, G. Spagnuolo, and M. Vitelli, “Granular control of photovoltaic arrays by means of a multioutput Maximum Power Point Tracking algorithm," Progress in Photovoltaics: Research and Applications, p. n/a-n/a, Mar. 2012.
  • [14] J. Ahmad, “A fractional open circuit voltage based maximum power point tracker for photovoltaic arrays," 2010 2nd International Conference on Software Technology and Engineering, Oct. 2010.
  • [15] J. Ahmed and Z. Salam, “A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability" Applied Energy, vol. 119, pp. 118-130, Apr. 2014.
  • [16] C.-S. Chiu and Y.-L. Ouyang, “Robust Maximum Power Tracking Control of Uncertain Photovoltaic Systems: A Unified T-S Fuzzy Model-Based Approach," IEEE Transactions on Control Systems Technology, vol. 19, no. 6, pp. 1516-1526, Nov. 2011.
  • [17] C. Carrero, J. Amador, and S. Arnaltes, “A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances," Renewable Energy, vol. 32, no. 15, pp. 2579-2589, Dec. 2007.
  • [18] E. Saloux, A. Teyssedou, and M. Sorin, “Explicit model of photovoltaic panels to determine voltages and currents at the maximum power point," Solar Energy, vol. 85, no. 5, pp. 713- 722, May 2011.
  • [19] J. A. Gow and C. D. Manning, “Development of a photovoltaic array model for use in power-electronics simulation studies," IEE Proceedings - Electric Power Applications, vol. 146, no. 2, p. 193, 1999.
  • [20] G. M. Masters, “Renewable and Efficient Electric Power Systems," Jul. 2004
  • [21] M. E. E. Telbany, A. Youssef, and A. A. Zekry, “Intelligent Techniques for MPPT Control in Photovoltaic Systems: A Comprehensive Review," 2014 4th International Conference on Artificial Intelligence with Applications in Engineering and Technology, Dec. 2014.
  • [22] Slotine, Jean-Jacques E., and Weiping Li. Applied nonlinear control. Vol. 199. No. 1. Englewood Cliffs, NJ: prentice-Hall, 1991.
  • [23] I.-S. Kim, “Sliding mode controller for the single-phase gridconnected photovoltaic system," Applied Energy, vol. 83, no. 10, pp. 1101-1115, Oct. 2006.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-38c00936-e459-4eb4-93d3-cb08030fd908
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.