Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | T. 71, nr 4 | 350--355
Tytuł artykułu

Enhanced piezoelectric properties of Na,Ce co-doped Bi4Ti2.86W0.14O12 high temperature piezoceramics

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Polepszone właściwości piezoelektryczne wysokotemperaturowej piezoceramiki Bi4Ti2,86W0,14O12 współdomieszkowanej Na i Ce
Języki publikacji
EN
Abstrakty
EN
Sodium and cerium co-doped Bi4Ti2.86W0.14O12 ceramics abided by the formula (Na0.5Ce0.5)xBi4-xTi2.86W0.14O12 (abbreviated as NC100x-BITW, x = 0-0.12) were prepared by solid state reaction method. The effect of (Na0.5Ce0.5) addition on the structure and electrical properties of the ceramics was investigated. XRD results indicated that the NC100x-BITW ceramics possess a pure three-layer Aurivillius-type structure. (Na0.5Ce0.5) addition first increases and then decreases the grain size which can be observed by scanning electron microscopy. With the increase of (Na0.5Ce0.5) addition, the Curie temperature (Tc) was gradually decreased from 632 C to 595 C. The piezoelectric properties can be enhanced while the dielectric loss decreased after (Na0.5Ce0.5) addition, and the optimal properties were obtained as follows when x = 0.06: d33 = 21.1 pC/N, kp = 7.2%, Qm = 4978, εr =147 (@100 kHz), tanδ = 0.27% (@100 kHz), Tc =614 C and resistivity of 4.3•108 Ω•cm at 500 C, suitable for high temperature sensing applications.
PL
Ceramikę Bi4Ti2.86W0.14O12 domieszkowaną sodem i cerem wytworzono zgodnie ze wzorem (Na0.5Ce0.5)xBi4-xTi2.86W0.14O12 (w skrócie NC100x-BITW, x = 0-0,12) metodą reakcji w fazie stałej. Zbadano wpływ dodatku (Na0,5Ce0,5) na budowę i właściwości elektryczne ceramiki. Wyniki XRD wykazały, że ceramika NC100x-BITW ma czystą, trójwarstwową strukturę typu Aurivilliusa. Dodanie (Na0,5Ce0,5) najpierw zwiększa, a następnie zmniejsza rozmiar ziarna, co można zaobserwować za pomocą skaningowej mikroskopii elektronowej. Wraz ze wzrostem dodatku (Na0,5Ce0,5) temperatura Curie (Tc) stopniowo obniżała się z 632 C do 595 C. Właściwości piezoelektryczne można poprawić, podczas gdy stratę dielektryczną zmniejszyć po dodaniu (Na0,5Ce0,5) i następujące optymalne właściwości uzyskano, gdy x = 0,06: d33 = 21,1 pC/N, kp = 7,2%, Qm = 4978, εr = 147 (@ 100 kHz), tgδ = 0,27% (@ 100 kHz), Tc = 614 C i rezystywność 4,3•108 Ω•cm przy 500 C, odpowiednie do zastosowań z czujnikami wysokotemperaturowymi.
Wydawca

Rocznik
Strony
350--355
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, China National Light Industry Key Laboratory of Functional Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China, shenzongyang@163.com
  • Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, China National Light Industry Key Laboratory of Functional Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China, shenzongyang@163.com
autor
  • Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, China National Light Industry Key Laboratory of Functional Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
  • Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, China National Light Industry Key Laboratory of Functional Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
autor
  • Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, China National Light Industry Key Laboratory of Functional Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
autor
  • Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, China National Light Industry Key Laboratory of Functional Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
autor
  • Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, China National Light Industry Key Laboratory of Functional Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
Bibliografia
  • [1] Park, B. H., Kang, B. S., Bu, S. D., Noh, T. W., Lee, J., Jo, W.: Lanthanum-substituted bismuth titanate for use in non-volatile memories, Nature, 401, (1999), 682-684.
  • [2] Chon, U., Jang, H. M., Kim, M. G., Chang, C. H.: Layered Perovskites with Giant Spontaneous Polarizations for Nonvolatile Memories, Phys. Rev. Lett., 89, (2002), 087601.
  • [3] Guo, D., Wang, C., Shen, Q., Zhang, L., Li, M., Liu, J.: Effect of measuring factors on ferroelectric properties of Bi3.15Nd0.85Ti3O12 thin films prepared by sol-gel method for non-volatile memory, Appl. Phys. A, 97, (2009), 877-881.
  • [4] Zhang, S., Yu, F.: Piezoelectric materials for high temperature sensors, J. Am. Ceram. Soc., 94, (2011), 3153-3170.
  • [5] Long, C., Fan, H., Li, M., Dong, G., Li, Q.: Crystal structure and enhanced electromechanical properties of Aurivillius ferroelectric ceramics, Bi4Ti3-x(Mg1/3Nb2/3)xO12, Scripta Mater., 75, (2014), 70-73.
  • [6] Zeng, X., Cao, F., Peng, Z., Xing, X.: Crystal structure and electric properties of (Li,Ce,Nd)-multidoped CaBi2Nb2O9 high temperature ceramics, Ceram. Int., 44, (2018), 3069-3076.
  • [7] Nie, R., Yuan, J., Chen, Q., Xing, J., Zhu, J., Zhang, W.: Crystal distortion and electrical properties of Ce-doped BIT-based piezoelectric ceramics, J. Am. Ceram., Soc. 102 (2019) 5432-5442.
  • [8] Subbarao, E. C.: A family of ferroelectric bismuth compounds, J. Phys. Chem. Solids, 23, (1962), 665-676.
  • [9] Newnham, R. E., Wolfe, R. W., Dorrian, J. F.: Structural basis of ferroelectricity in the bismuth titanate family, Mater. Res. Bull., 6, (1971) ,1029-1039.
  • [10] Pelaiz-Barranco, A., Gonzalez-Abreu, Y.: Ferroelectric ceramic materials of the Aurivillius family, J. Adv. Dielectr., 3, (2013), 1330003.
  • [11] Yan, H., Zhang, H., Ubic, R., Reece, M. J., Liu, J., Shen, Z., Zhang, Z.: A Lead-Free High-Curie-Point Ferroelectric Ceramic, CaBi2Nb2O9, Adv. Mater., 17, (2005), 1261-1265.
  • [12] Senthil, V., Badapanda, T., Bose, A. C., Panigrahi, S.: Enhancement of dielectric and ferroelectric properties of dysprosium substituted SrBi2Ta2O9 ceramics, J. Mater. Sci.: Mater. Electron., 27, (2016), 1602-1608.
  • [13] Yong, C., Li, Z., Su, H., Xue, S., Bian, M., Xu, L., Cao, W., Huang, Z.: Influence of Ti content and sintering temperature on dielectric properties of Bi4Ti3O12 ceramics, Int. J. Mod. Phys. B, 31, (2017), 1744057.
  • [14] Shen, Z. Y., Sun, H. J., Tang, Y. X., Li, Y. M., Zhang, S. J.: Enhanced piezoelectric properties of Nb and Mn co-doped CaBi4Ti4O15 high temperature piezoceramics, Mater. Res. Bull., 63, (2015), 129-133.
  • [15] Wang, C. M., Wang, J. F.: Aurivillius Phase Potassium Bismuth Titanate: K0.5Bi4.5Ti4O15, J. Am. Ceram. Soc., 91, (2008), 918-923.
  • [16] Chen, H. B., Shen, B., Xu, J. B., Zhai, J. W.: A combination method for improving electrical property of Calcium bismuth niobate ceramics, J. Electroceram., 30, (2013), 133-138.
  • [17] Jardiel, T., De La Rubia, M. A., Peiteado, M.: Control of functional microstructure in WO3-doped Bi4Ti3O12 Ceramics, J. Am. Ceram. Soc., 91, (2008), 1083-1087.
  • [18] Tang, Y., Shen, Z. Y., Du, Q., Zhao, X., Wang, F., Qin, X., Wang, T., Shi, W., Sun, D., Zhou, Z., Zhang, S.: Enhanced pyroelectric and piezoelectric responses in W/Mn-codoped Bi4Ti3O12 Aurivillius ceramics, J. Eur. Ceram. Soc., 38, (2018), 5348-5353.
  • [19] Zhang, Z., Shen, Z. Y., Qin, C., Song, F., Luo, W., Wang, Z., Li, Y.: Effect of W6+ modification on electrical properties of Bi4Ti3O12 high temperature piezoelectric ceramics, J. Ceram., (2019), accepted.
  • [20] Zeng, X. G., Cao, F., Peng, Z. H., Xing, X. H.: Crystal structure and electrical properties of (Li,Ce,Nd)-multidoped CaBi2Nb2O9 high temperature ceramics, Ceram. Int., 44, (2018), 3069-3076.
  • [21] Yan, H., Li, C., Zhou, J., Zhu, W., He, L., Song, Y., Yu, Y.: Effects of A-site (NaCe) substitution with Na-deficiency on structures and properties of CaBi4Ti4O15-based high-curie-temperature ceramics, Jpn. J. Appl. Phys., 40, (2001), 6501-6505.
  • [22] Yan, H., Zhang, Z., Zhu, W., He, L., Yu, Y., Li, C., Zhou, J.: The effect of (Li,Ce) and (K,Ce) doping in Aurivillius phase material CaBi4Ti4O15, Mater. Res. Bull., 39, (2004), 1237-1246.
  • [23] Shen, Z. Y., Luo, W. Q., Tang, Y. X., Zhang, S., Li, Y.: Microstructure and electrical properties of Nb and Mn co-doped CaBi4Ti4O15 high temperature piezoceramics obtained by two-step sintering, Ceram. Int., 42, (2016), 7868-7872.
  • [24] Qin, Shen, C., Z. Y., Luo, W., Song, F., Wang, Z., Li, Y.: Microstructure related properties enhancing in Ce-doped CaBi2Nb2O9 high temperature piezoelectric ceramics, Mater. Res. Express, 6, (2019), 106308.
  • [25] Naceur, H., Megriche, A., Maaoui, M. E.: Effect of sintering temperature on microstructure and electrical properties of Sr1-x(Na0.5Bi0.5)xBi2Nb2O9 solid solutions, J. Adv. Ceram., 3, (2014), 17-30.
  • [26] Liu, G., Ren, S., Wu, C., Wang, D., Li, F., Wu, J., Chen, Q.: Enhanced thermal stability of (NaCe)-multidoped CaBi2Nb2O9 by A-site vacancies-induced pseudo-tetragonal distortion, J. Am. Ceram. Soc., 101, (2018), 4615-4626.
  • [27] Shulman, H. S., Testorf, M., Damjanovic, D., Setter, N.: Microstructure, Electrical Conductivity, and Piezoelectric Properties of Bismuth Titanate, J. Am. Ceram. Soc., 79, (1996), 3124-3128.
  • [28] Zhou, Z. Y., Dong, X. L., Chen, H.: Structural and Electrical Properties of W6+-Doped Bi3TiNbO9 High-Temperature Piezoceramics, J. Am. Ceram. Soc., 89, (2006), 1756-1760.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-389827e4-6989-455e-9f64-9909625a7ef3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.