Warianty tytułu
Zróżnicowanie składu agregatów uprawowych w zależności od warunków użytkowania
Języki publikacji
Abstrakty
The authors propose an approach to complete a task that is important for agricultural production, while ensuring a specified quality index of soil cultivation with minimal energy and labor costs and maximum reduction of negative environmental impact on soil and the surrounding environment. This is done using combined machines with an optimal set of working bodies. Achieving this goal involves differentiating the composition of combined soil-tillage machines depending on their operating conditions based on a methodology that can be based on an algorithm for determining the overall quality index, mathematical models of the functioning of individual working bodies, and appropriate original software.
Zaproponowano podejście do rozwiązania zadania ważnego z punktu widzenia produkcji rolnej, przy jednoczesnym zapewnieniu określonego wskaźnika jakości uprawy gleby, minimalnych kosztach energii i pracy oraz maksymalnym zmniejszeniu negatywnego wpływu na glebę i otaczające środowisko. Podejście zakłada zastosowanie agregatu uprawowego z optymalnym układem zespołów roboczych. Osiągnięcie tego celu wymaga zróżnicowania układu zespołów roboczych agregatów uprawowych w zależności od warunków ich pracy. Określa się je z wykorzystaniem metodologii, która może bazować na algorytmie w celu określenia ogólnego wskaźnika jakości oraz opracowania modeli matematycznych funkcjonowania poszczególnych organów roboczych, a także z wykorzystaniem autorskiej aplikacji.
Czasopismo
Rocznik
Tom
Strony
353--365
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Central Ukrainian National Technical University, Agricultural Engineering Faculty, 8 University Ave., Kropyvnytskyi, 25006, Ukraine, salovm@ukr.net
autor
- Central Ukrainian National Technical University, Agricultural Engineering Faculty, 8 University Ave., Kropyvnytskyi, 25006, Ukraine, pastukhov.v@ukr.net
autor
- Central Ukrainian National Technical University, Agricultural Engineering Faculty, 8 University Ave., Kropyvnytskyi, 25006, Ukraine, sersfsgm@ukr.net
autor
- Cyclone Manufacturing Inc, Mississauga, Ontario, L5N 5S1, Canada, shchurtg@gmail.com
autor
- Manufacturing Innovations, US Foundry, 8351 NW 93rd Street, Medley FL, 33166, USA, oleg.dzhidzhora@groupnei.com
autor
- Institute of Natural Science and Technology, Angelus Silesius Academy of Applied Sciences, Walbrzych, Poland, kszwedziak@ans.edu.pl
autor
- Department of Machinery Exploitation and Management of Production Processes, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland, stanislaw.parafiniuk@up.lublin.pl
Bibliografia
- Abo Al-kheer, A., Eid, M., Aoues, Y., El-Hami, A.,Kharmanda, M. G., & Mouazen, A. M. (2011). Theoreticalanalysis of the spatial variability in tillage forces for fatigueanalysis of tillage machines. Journal of Terramechanics, 48(4), 285-295. https://doi.org/10.1016/j.jterra. 2011.05.002
- Abo Al-kheer, A., El-Hami, A., Kharmanda, M. G., & Mouazen, A. M. (2010). Reliability-based design for soil tillage machines. Journal of Terramechanics, 48(1), 57-64. https://doi.org/10.1016 /j.jterra.2010.06.001.
- Almaliki, S. (2018). Simulation of draft force for three types of plow using response surface method under various field conditions. The Iraqi Journal of Agricultural Sciences, 49(6), 1123-1124. https://doi.org/10.36103/ijas.v49i6.151.
- Azimi-Nejadian, H., Karparvarfard, S. H., Naderi-Boldaji, M., & Rahmanian-Koushkaki, H. (2019). Combined finite element and statistical models for predicting force components on a cylindrical mouldboard plough. Biosystems Engineering, 186, 168-181. https://doi.org/10.1016/j.biosystemseng.2019.07.007.
- Azizi, A., Gilandeh, Y. A., Mesri-Gundoshmian, T., Saleh-Bigdeli, A. A., & Moghaddam, H. A. (2020). Classification of soil aggregates: A novel approach based on deep learning. Soil and Tillage Research, 199, 104586. https://doi.org/10.1016/j.still.2020.104586.
- Celik, H. K., Caglayan, N., Topakci, M., Rennie, A. E. W., & Akinci, I. (2020). Strength-based design analysis of a Para-Plow tillage tool. Computers and Electronics in Agriculture, 169, 105168. https://doi.org/10.1016/j.compag.2019.105168.
- Chirende, B., Li, J. Q., & Vheremu, W. (2019). Application of finite element analysis in modeling of bionic harrowing discs. Biomimetics, 4(3), 61. https://doi.org/10.3390/biomimetics4030061.
- Ebrahimi, R., Mirdamadi, H. R., & Ziaei-Rad, S. (2018). Operational modal analysis and fatigue life estimation of a chisel plow arm under soil-induced random excitations. Measurement, 116, 451-457. https://doi.org/10.1016/j.measurement.2017.11.020.
- He, C., You, Y., Wang, D., & Wu, H. (2018). Estimating soil failure due to torsion via vane shear test by varying vane diameter and soil properties. Soil and Tillage Research, 177, 68-78. https://doi.org/10.1016/j.still.2017.12.004.
- Jiang, X., Tong, J., Ma, Y., & Sun, J. (2020). Development and verification of a mathematical model for the specific resistance of a curved subsoiler. Biosystems Engineering, 190, 107-119. https://doi.org/10.1016/j.biosystemseng.2019.12.004.
- Jirigalantu, Li, X., Mi, X., Liu, K., & Tang, Y. (2017). Development of a parameterized mechanical model of a chisel-edge grating ruling tool. Precision Engineering, 50, 388-392. https://doi.org/10.1016/j.precisioneng.2017.06.013.
- Karaiev O., Bondarenko L., Halko S., Miroshnyk O., Vershkov O., Karaieva T., Shchur T Findura P.,& Prístavka M. (2021). Mathematical modelling of the fruit-stone culture seeds calibration process using flat sieves. Acta Technologica Agriculturae, 24(3), 119-123. https://doi.org/10.2478/ata2021-0020.
- Leschenko, S. (2014). Experimental estimate of the efficiency of basic tilling by chisel equipment in the conditions of soil. In Design, production and operation of agricultural machines. All-state interdepartmental scientific and technical collection. Eds Sergey Leschenko, Vasil Salo, Dmitry Petrenko. Kirovohrad, UA.
- Leshchenko, S., Salo, V., Vasylkovskyy, A. (2014). Situation and prospect of intensifying the work of chisel tools to preserve the natural fertility. MOTROL, 16(2), 195-201.
- Lezhenkin O. , Halko, S., Miroshnyk O., Vershkov O., Lezhenkin I., Suprun O., Shchur T., Kruszelnicka W., & Kasner, R. (2021). Investigation of the separation of combed heap of winter wheat. Journal of Physics: Conference Series, 1781(1), 012016. https://doi.org/10.1088/1742- 6596/1781/1/012016.
- Prem, M., Swarnkar, R., Kantilal, V. D. K., Jeetsinh, P. S. K., & Chitharbhai, K. B. (2016). Combined tillage tools-a review. Current Agriculture Research Journal, 4(2), 179. http://dx.doi.org/10.12944/CARJ.4.2.07.
- Ranjbar, I., Rashidi, M., Najjarzadeh, I., Niazkhani, A., & Niyazadeh, M. (2013). Modeling of moldboard plow draft force based on tillage depth and operation speed. Middle-East Journal of Scientific Research, 17(7), 891-897. https://doi.org/10.5829/idosi.mejsr.2013.17.07.12232.
- Renon, N., Montmitonnet, P., & Laborde, P. (2005). Numerical formulation for solving soil/tool interaction problem involving large deformation. Engineering Computations, 22(1), 87-109. https://doi.org/10.1108/02644400510572424.
- Van Capelle C., Schrader S., & Brunotte J. (2012). Tillage-induced changes in the functional diversity of soil biota - A review with a focus on Germandata. European Journal of Soil Biology, 50, 165-181.
- Vasylkovska K.V., Leshchenko S.M., Vasylkovskyi O.M., & Petrenko D.I. (2016) Improvement of equipment for basic tillage and sowing as initial stage of harvest forecasting. INMATEH - Agricultural Engineering, 50(3), 13-20.
- Zeng, Z., Chen, Y., & Zhang, X. (2017). Modelling the interaction of a deep tillage tool with heterogeneous soil. Computers and Electronics in Agriculture, 143, 130-138. https://doi.org/10.1016/J.COMPAG.2017.10.005.
- Zeng, Z., Ma, X., Chen, Y., & Qi, L. (2020). Modelling residue incorporation of selected chisel ploughing tools using the discrete element method (DEM). Soil and Tillage Research, 197, 104505. https://doi.org/10.1016/j.still.2019.104505.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-385b896c-0c02-4293-bc0a-f118d5bdcc53