Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | Vol. 15, no. 2 (61) | 43--49
Tytuł artykułu

A Hybrid Expert Systems Architecture for Yarn Fault Diagnosis

Warianty tytułu
PL
Hybrydowe systemy eksperckie do rozpoznawania uszkodzeń przędzy
Języki publikacji
EN
Abstrakty
EN
This article describes a hybrid expert system architecture to support yarn fault diagnosis. The system uses a combination of rule-based and case-based techniques to achieve the diagnosis. Rule-based systems handle problems with well-defined knowledge bases, which limits the flexibility of such systems. To overcome this inherent weakness of rule-based systems (RBS), case-based reasoning (CBR) has been adopted to improve the performance of the expert system by incorporating previous cases in the generation of new cases. The idea of this research is to use rules to generate a diagnosis on a fault and to use cases to handle exceptions to the rules. The cases are represented using an object-oriented approach to support abstraction, re-use and inheritance features.
PL
Artykuł ten opisuje architekturę hybrydowego systemu eksperckiego, stosowanego jako pomoc w rozpoznawaniu błędów przędzy. W celu dokonania rozpoznania uszkodzeń, system hybrydowy oparty jest na kombinacji technik, których podstawami są „reguły” i „przypadki”. Systemy oparte na „regułach” (SOR) rozwiązują problemy o dobrze znanych i określonych zasadach, co ogranicza elastyczność takich systemów. Aby pokonać tą ich nieodłączną niesprawność i polepszyć działanie systemu, zastosowano podsystemy rozpoznające przypadki (SRP), dla generacji nowych przypadków na podstawie analizy dotychczasowych. Myślą przewodnią przedstawionego opracowania jest stosowanie reguł dla generowania diagnozy, dotyczącej danego błędu i wykorzystania przypadków dla rozpatrywania odstępstw od reguł. Przypadki są reprezentowane poprzez dochodzenie do celu zorientowanie na obiekt dla wsparcia abstrakcji reguły i powtórnej realizacji zadania.
Wydawca

Rocznik
Strony
43--49
Opis fizyczny
Bibliogr. 50 poz., rys.
Twórcy
autor
  • National University of Science and Technology, Box AC 939, Ascot, Bulawayo, Zimbabwe, ndlodlo@nust.ac.zw, ndlodlo@csir.co.za
  • Council for Scientific and Industrial Research, National Fibre, Textile and Clothing Centre, Box 1124, Gomery Avenue, Summerstrand, Port Elizabeth, South Africa 6000
autor
  • Nelson Mandela Metropolitan University P.O. Box 7700 Port Elizabeth, South Africa 6003, lawrance.hunter@nmmu.ac.za, lhunter@csir.co.za
  • Council for Scientific and Industrial Research, National Fibre, Textile and Clothing Centre, Box 1124, Gomery Avenue, Summerstrand, Port Elizabeth, South Africa 6000
autor
  • Council for Scientific and Industrial Research, National Fibre, Textile and Clothing Centre, Box 1124, Gomery Avenue, Summerstrand, Port Elizabeth, South Africa 6000, ccele@csir.co.za
  • Council for Scientific and Industrial Research, National Fibre, Textile and Clothing Centre, Box 1124, Gomery Avenue, Summerstrand, Port Elizabeth, South Africa 6000, rmetler@csir.co.za
autor
  • Council for Scientific and Industrial Research, National Fibre, Textile and Clothing Centre, Box 1124, Gomery Avenue, Summerstrand, Port Elizabeth, South Africa 6000, afbotha@csir.co.za
Bibliografia
  • 1. Aamodt A., Plaza E., ‘Case-based reasoning: foundational issues, methodological variations and system approaches’, Artificial Intelligence communications (AI Com), Vol. 7, No. 1, p. 35-59, 1994.
  • 2. Ashley K.D., ‘Arguing by analogy in law: a case-based model’. D.H. Helaman (eds.), Analogical reasoning: perspectives of artificial intelligence, Cognitive Science and Philosophy. D. Redei, 1988.
  • 3. Aspland J.R., Davis J.S., Waldrop T.A., ‘An expert system for selection of fluorescent whiteners’, Textile Chemist and Colorist, Vol. 23, No.9, p. 74-76, 1991.
  • 4. Bain W.M., ‘Case-based reasoning: a computer model of subjective assessment’. PhD. Thesis, Yale university, Yale, CT, US, 1986.
  • 5. Bareiss R., Porter B., Murray, ‘Supporting start-to-finish development of knowledge bases’, Machine Learning, Vol.4, p. 259-283, 1989.
  • 6. Behera B.K., Muttagi S.B., Arun G., Panwar U., ‘Expert systems for engineering of technical textiles’, Indian Textile Journal, p. 21-23, 2004.
  • 7. Biondo S.J., ‘Fundamentals of expert systems technology: principles and concepts’, Ablex, Norwood, NJ, ISBN-89391-701, 1990.
  • 8. Birnbaum L., Collings G., ‘Remindings and engineering design themes: a case study in indexing vocabulary’. Proceedings of the Second Workshop on Case-based Reasoning, Pensacola Beach, Florida, 1989.
  • 9. Booch G., ‘Object-oriented design with applications’, Redwood City, California: Benjamin/Cummings, 1991.
  • 10. Buchanan B., Smith R., ‘Fundamentals of expert systems’, Annual Review of Computer Science, Vol. 3, p. 23-58, 1988.
  • 11. Chan C.W., Chen L.L., Geng L., ‘Knowledge engineering of an intelligent case-based system for help-desk operations’, Expert Systems with Applications, Vol. 18, No.2, p. 125-132, 2000.
  • 12. Cheung C.F., Lee W.B., Wang W.M., Chu K.F., Chu S., ‘A multi-perspective knowledge-based system for customer-service management’, Expert Systems with Applications, Vol. 24, No. 4, p. 457-470, 2003.
  • 13. Choy K.L., Lee W.B., Lo V, ‘Design of case-based intelligent supplier relationship management system – the integration of supplier rating system and product code system’, Expert Systems with Applications, Vol. 25, No 1, p. 87-100, 2003.
  • 14. Coad P., Yourdon E., ‘Object-oriented analysis’, Eaglewood Cliffs, New Jersey: Prentice-Hall, 1990.
  • 15. Convert R., Schacher L., Pierre V., ‘An expert system for the dyeing recipes determination’, Journal of Intelligent Manufacturing, Vol. 11, p. 145-155, 2000.
  • 16. Cunningham P., Bonzano A. ‘Knowledge engineering issues in developing a case-based reasoning application’, Knowledge-based Systems, Vol. 12, No. 7, p. 371-379, 1999.
  • 17. David B.S., ‘Principles for case presentation in a case-biased aiding system for lesson planning’. Proceedings of the Workshop on Case-based Reasoning, Madison Hotel, Washington, 8-10 May, 1991.
  • 18. Doraiswamy I., Basu A., Chellamani K.P., Kumar P.R., ‘Fabric engineering using artificial neural networks’, Colourage Annual, p. 93-107, 2005.
  • 19. Fan J., Newton E., Au R., ‘Predicting garment drape with a fuzzy-neural network’, Textile Research Journal, Vol. 71, No. 7, p. 605-608, 2001.
  • 20. Goodman M., ‘CBR in battle planning’. Proceedings of the American Association For Artificial Intelligence, AAAI-86, August 1986, Philadelphia, PA, US, 1989.
  • 21. Hinrichs T.R., ‘Problem solving in open worlds’. Lawrance Erlbaum Associates, 1992.
  • 22. Hunt L., ‘Case-based diagnosis and repair of software faults’, Expert Systems, Vol. 14, No. 1, p. 15-23, 1997.
  • 23. Hussain T., Wardman R.H., Shamey R., ‘A knowledge-based expert for dyeing of cotton. Part 1: Design and development’, Coloration Technology, Vol. 121, p. 53-58, 2005.
  • 24. Johnson R.E., Foote B., ‘Designing reusable classes’, Journal of Object-Oriented Programming, Vol. 1, No. 2, p. 22-35, 1988.
  • 25. Ignizio J.P., ‘Introduction to expert systems: the development and implementation of rule-based expert systems’, McGraw-Hill, ISBN 0-07-909785-5, 1991.
  • 26. Kuo C.J., Lee C., Tsai C., ‘Using neural network to identify fabric defects in dynamic cloth inspection’, Textile Research Journal, Vol. 73, No. 3, p. 238-244, 2003.
  • 27. Lau H.C.W., Jiang B., Lee .B., Lau K.H., ‘Development of an intelligent data mining system for a dispersed manufacturing network’, Expert Systems Vol. 18, No. 4, p. 175-185, 2001.
  • 28. Lau H.C.W., Choy K.L., Lau P.K.H., Tsui W.T., Choy L.C., ‘An intelligent logistics support system for enhancing the airfreight forwarding business’, Expert Systems, Vol. 25, No. 5, p. 253-268, 2004.
  • 29. Lee D., Lee K.H., ‘An approach to case-based system for conceptual ship design assistant’. Expert Systems with Applications, Vol. 16, No.2, p. 97-104, 1999.
  • 30. Lewandowski S., Stanczyk T., ‘Identification and classification of spliced wool combed yarn joints by artificial neural networks. Part 1: Developing an artificial neural network model’, Fibres and Textiles in Eastern Europe, Vol. 13, No. 1, p. 39-43, 2005.
  • 31. Liao S.H., ‘Case-based decision-support system: architecture for simulating military command and control’, European Journal of Operational Research, Vol. 123, No. 3, p. 558-567, 2000.
  • 32. Lin J., Lin C., Tsai I., ‘Applying expert systems and fuzzy logic to an intelligent diagnosis system for fabric inspection’, Textile Research Journal, Vol. 65, No. 12, p. 697-709, 1995.
  • 33. Linden V., ‘Applications of Bayesian decision theory to intelligent tutoring systems’, Textile Research Journal, Vol. 54, p. 77-82, 1986.
  • 34. Liu Y., Geng Z., ‘Three-dimensional garment computer aided intelligent design’, Journal of Industrial Textiles, Vol. 33, No. 1, p. 43-54, 2003.
  • 35. Micallef J., ‘Encapsulation, reusability and extendibility in object-oriented programming languages’, Journal of Object-Oriented Programming, Vol. 1, No. 1, p. 12-36, 1988.
  • 36. Ng W.W.M, ‘Development of an expert system on denim fabric’, Proceedings of the World Conference on Asia and World Textiles, p. 609-627, 1993.
  • 37. Morpurgo R., Mussi S., ‘I-DSS: an intelligent diagnostic support system’, Expert Systems, Vol. 18, No. 1, p. 43-58, 2001.
  • 38. Nygaard K., ‘Concepts in object-oriented programming’, ACM SIGPLAN Notices, Vol. 21, No. 10, p. 128-132, October 1986.
  • 39. Pascoe G. A., ‘Elements of object-oriented programming’, Byte Vol. 11, No. 8, p. 139-144, 1986.
  • 40. Pham T.T., Chen G., ‘Some applications of fuzzy logic in rule-based expert systems’, Expert Systems, Vol. 19, No. 4, p. 208-223, 2002.
  • 41. Rawal A., Prasad P., Potluri P., Steele C., ‘Geometrical modeling of the yarn paths in three-dimensional braided structures’, Journal of Industrial Textiles, Vol. 35, No.2, p. 115-135, 2005.
  • 42. Rentsch T., ‘Object-oriented programming’, ACM SIGPLAN Notices, Vol. 17, No. 9, p. 51-57, 1982.
  • 43. Robson D., ‘Object-oriented software systems’, Byte Vol. 6, No. 8, p. 74-86, 1981.
  • 44. Srinivasan K., Dastoor P.H., Radhakrishnaia P., Jayaraman S., ‘FDAS: a knowledge-based framework for analysis of defects in woven textile structures’, Journal of the Textile Institute, Vol. 83, No. 3, p. 431-448, 1992.
  • 45. Sycara E.P., ‘Resolving adversarial conflicts: an approach to integrating case-based and analytic methods’. Technical report GIT-ICS-87/26, Georgia Institute of Technology, School of Information and Computer Science, Atlanta, GA, 1987.
  • 46. Tsai I., Lin C., Lin J., ‘Applying artificial neural network to pattern recognition in fabric defects’, Textile Research Journal, Vol. 65, No. 3, p. 123-130, 1995.
  • 47. Tunstel E., Howard A., Seraji H., ‘Rule-based reasoning and neural network perception for safe off-road robot mobility’, Expert Systems, Vol. 19, No. 4, p. 191-200, 2002.
  • 48. Waterman D. A., A guide to expert systems. Addison Wesley Publishing, Computer, 1986.
  • 49. The WIRA textile book, Rae, A., Bruce, R (eds.), Wira, B97-B114, Thornton and Pearson (printers) LTD., Bradford, UK, 1982.
  • 50. Xu L.D., Li L. X., ‘A hybrid system applied to epidemic screening’, Expert Systems, Vol. 17, No. 2, p. 81-89, 2000.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3821dc7f-73b4-4f90-82e9-64f5fa531d8d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.