Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, iss. 9 | 277--289
Tytuł artykułu

The Oum Er-Rbia Watershed Web Mapping System – A Model for Open-Source Water Quality Dissemination

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Oum Er-Rbia watershed faces a critical challenge in effectively disseminating the results of groundwater and surface water quality assessments to stakeholders and the public. This research aimed to address this challenge by developing a method for synthesizing and visualizing knowledge through web mapping. The methodology followed involved collecting data on surface and groundwater quality, hydrogeology, human impact, and topography. Subsequently, a needs analysis was conducted to identify the requirements of potential users (land managers, water users, researchers) to define system functionalities. Spatial data was organized into thematic layers (e.g., hydrography, geology) with detailed attributes to address user queries and generate maps. Open-source technologies were employed to build a web-based system (SCIEM) allowing users to visualize, analyze, and explore water quality data. Finally, user evaluation confirmed SCIEM’s effectiveness in disseminating and analyzing water quality information within the watershed. The developed web mapping system has successfully addressed the challenge of disseminating research results by establishing an online, interactive multi-scale mapping system for groundwater and surface water characterization. This system facilitates the presentation of maps with a simple click, making them accessible to both geospatial experts and non-specialists. As a result, stakeholders such as water managers, land-use planners, and even farmers and citizens can now access a comprehensive view of groundwater and surface water information. Additionally, the utilization of free and open-source software has proven to be a cost-effective and efficient approach. The interactive multi-scale mapping system (IMSMS) provides a valuable tool for disseminating water quality data within the Oum Er-Rbia watershed. Building on this success, future research can explore the potential of adapting the IMSMS framework to other regions facing water quality challenges. Additionally, incorporating new data types beyond water management could provide a more holistic understanding of the interconnected factors influencing water resources.
Wydawca

Rocznik
Strony
277--289
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Laboratory Organic Chemistry, Catalysis and Environment, Department of Chemistry, Faculty of Science, University Ibn Toufail BP 133-14000, Kenitra, Morocco, ouhakki_hic@yahoo.fr
  • Laboratory Organic Chemistry, Catalysis and Environment, Department of Chemistry, Faculty of Science, University Ibn Toufail BP 133-14000, Kenitra, Morocco, taouil.hamd@gmail.com
  • Laboratory of Physical Chimistry of Matérials, Ben M'Sik faculty of sciences, University Hassan II de Casablanca, BP 5366 Casablanca. Marocco, soufiane.zerraf@gmail.com
  • Laboratory Organic Chemistry, Catalysis and Environment, Department of Chemistry, Faculty of Science, University Ibn Toufail BP 133-14000, Kenitra, Morocco, Nouredine.Elmejdoub@uit.ac.ma
  • Laboratory of Natural Resources and Sustainable Development, Department of Biology, Faculty of Science, University Ibn Toufail, BP 133-14000, Kenitra, Morocco
Bibliografia
  • 1. Abdalla, F. 2012. Mapping of groundwater prospective zones using remote sensing and GIS techniques : A case study from the Central Eastern Desert, Egypt. Journal of African Earth Sciences, 70, 8–17.
  • 2. Acil, N. 2016. Remote sensing-based monitoring of snow cover dynamics and its influence on vegetation growth in the Middle Atlas Mountains. Master Thesis in Geographical Information Science.
  • 3. Adeyemo, O.K. 2003. Consequences of pollution and degradation of Nigerian aquatic environment on fisheries resources. Environmentalist, 23, 297–306.
  • 4. Aouragh, M.H., Essahlaoui, A. 2018. A TOPSIS approach-based morphometric analysis for sub-watersheds prioritization of high Oum Er-Rbia basin, Morocco. Spatial Information Research, 26, 187–202.
  • 5. Bertrand, G., Goldscheider, N., Gobat, J.-M., Hunkeler, D. 2012. From multi-scale conceptualization to a classification system for inland groundwater-dependent ecosystems. Hydrogeology Journal, 20(1), 5–25.
  • 6. Brodie, R., Sundaram, B., Tottenham, R., Hostetler, S., Ransley, T. 2007. An overview of tools for assessing groundwater-surface water connectivity. Bureau of Rural Sciences, Canberra, 133.
  • 7. Caquard, S. 2013. Cartography I: Mapping narrative cartography. Progress in Human Geography, 37(1), 135–144.
  • 8. Cecconi, A. 2003. Integration of cartographic generalization and multi-scale databases for enhanced web mapping.
  • 9. Dodge, M., Kitchin, R., Perkins, C. 2011. The map reader : Theories of mapping practice and cartographic representation. John Wiley & Sons.
  • 10. Dodge, M., McDerby, M., Turner, M. 2011. Geographic visualization : Concepts, tools and applications. John Wiley & Sons.
  • 11. Fraser, C.M., Kalin, R.M., Kanjaye, M., Uka, Z. 2023. A methodology to identify vulnerable transboundary aquifer hotspots for multi-scale groundwater management. In Groundwater, 297–315. Routledge.
  • 12. Geleta, Y., Haileslassie, A., Simane, B., Assefa, E., Bantider, A. 2023. Mapping community perception, synergy, and trade-off of multiple water values in the Central Rift Valley Water System of Ethiopia. Water, 15(16), 2986.
  • 13. Giuffrida, N., Le Pira, M., Inturri, G., Ignaccolo, M. 2019. Mapping with stakeholders : An overview of public participatory GIS and VGI in transport decision-making. ISPRS International Journal of Geo-Information, 8(4), 198.
  • 14. Kafando, H., Ouedraogo, B., Ojeh, V.N., Rienow, A., Gadiaga, A., Garba, I.E.M. 2024. Development of a Web-Based GIS of Flood Zones in the Municipality of Ouagadougou in Burkina Faso. Journal of Geographic Information System, 16(1), 32–43.
  • 15. Khatri, N., Tyagi, S. 2015. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers in life science, 8(1), 23–39.
  • 16. Kolkman, M.J., Kok, M., Van der Veen, A. 2005. Mental model mapping as a new tool to analyse the use of information in decision-making in integrated water management. Physics and chemistry of the earth, Parts A/B/C, 30(4–5), 317–332.
  • 17. Machiwal, D., Cloutier, V., Güler, C., Kazakis, N. 2018. A review of GIS-integrated statistical techniques for groundwater quality evaluation and protection. Environmental Earth Sciences, 77(19), 681.
  • 18. Nassoh, R., Echajia, M., Zoukeni, B., Mouhsin, M., Mbarki, M., Oubenali, M., Hakkani, B., Bensalem, A., EL Ouafy, T. 2023. Prediction of Pluviometry in the OUM ER RABIA Hydraulic Basin. J. Mater. Environ. Sci., 14 (7), 785, 795(1), 2.
  • 19. Panagiotopoulou, M., Stratigea, A. 2017. Spatial data management and visualization tools and technologies for enhancing participatory e-planning in smart cities. Smart cities in the Mediterranean: Coping with sustainability objectives in small and medium-sized cities and island communities, 31–57.
  • 20. Roth, R.E. 2013. Interactive maps : What we know and what we need to know. Journal of Spatial Information Science, 6, 59–115.
  • 21. Sharma, N., Mishra, S. 2017. Dissemination of heat wave alerts using spatial mashup technology and open source GIS. Journal of Geomatics, 11(2), 268–274.
  • 22. Slocum, T.A., McMaster, R.B., Kessler, F.C., Howard, H.H. 2022. Thematic cartography and geovisualization. CRC Press.
  • 23. Smith, D.A. 2016. Online interactive thematic mapping : Applications and techniques for socio-economic research. Computers, Environment and Urban Systems, 57, 106–117.
  • 24. Smith, M.J., Hillier, J., Otto, J.-C., Geilhausen, M. 2013. Geovisualization.
  • 25. Tabacaru, A., Nistor-Lopatenco, L., Bejan, I., Pantaz, A. 2021. The use of geographic information system for flood predictions. Journal of Engineering Sciences, 2, 112–119.
  • 26. Tsihrintzis, V.A., Hamid, R., Fuentes, H.R. 1996. Use of geographic information systems (GIS) in water resources : A review. Water resources management, 10, 251–277.
  • 27. Veenendaal, B., Brovelli, M.A., Li, S. 2017. Review of web mapping : Eras, trends and directions. ISPRS International Journal of Geo-Information, 6(10), 317.
  • 28. Voigt, S., Giulio-Tonolo, F., Lyons, J., Kučera, J., Jones, B., Schneiderhan, T., Platzeck, G., Kaku, K., Hazarika, M.K., Czaran, L. 2016. Global trends in satellite-based emergency mapping. Science, 353(6296), 247–252.
  • 29. World Health Organization. 2022. Guidelines for drinking-water quality : Incorporating the first and second addenda. World Health Organization.
  • 30. Xu, H., Berres, A., Liu, Y., Allen-Dumas, M.R., Sanyal, J. 2022. An overview of visualization and visual analytics applications in water resources management. Environmental Modelling & Software, 153, 105396.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3768eb9d-5fc9-41f8-9112-625161b15e5a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.