Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 63, nr 1 | 88--101
Tytuł artykułu

Carbon accumulation in the bulk soil and different soil fractions during the rehabilitation of desertified grassland in Horqin Sandy Land (Northern China)

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Desertification, which affects more than two-thirds of the world’s arid and semi-arid regions, is a significant global ecological and environmental problem. There is a strong link between desertification of the drylands and emission of CO2 from soil and vegetation to the atmosphere. The Horqin Sandy Land is a severely desertified area in China’s agro-pastoral ecotone due to its fragile ecology, combined with unsustainable land management. We estimated changes of organic carbon content in the bulk soil (0–5 cm), in the light-fraction of soil organic matter (based on density fractionation), and in the various particle-size fractions in areas with mobile sand dunes after implementing grazing exclusion (12 and 27 years) and tree and shrub planting (22 and 24 years). Carbon stocks in the bulk soil and all soil density and particle-size fractions increased significantly in the exclosure and plantation plots. The average rates of carbon accumulation in the bulk soil in the exclosure and plantation plots were 16.0 and 17.8 g m-2 y-1, respectively, versus corresponding values of 2.3 and 7.1 g m-2 y-1 for the light fraction, 4.3 and 8.0 g m-2 y-1 for the coarse fraction, 5.0 and 3.4 g m-2 y-1 for the fine sand, 4.5 and 4.2 g m-2 y-1 for the very fine sand, and 1.8 and 1.8 g m-2 y-1 for the silt+clay fraction. The older the exclosure and plantation, the more carbon accumulated in the bulk soil and in each fraction. The carbon pool exceeded the level in non-desertified grasslands after 27 years of grazing exclosure and 24 years of the shrub plantation. Our results suggest that both grazing exclusion and planting trees and shrubs can restore desertified grassland, creating a high potential for sequestering soil carbon, but that the plantations appeared to accumulate soil carbon faster than the exclosures.
Wydawca

Rocznik
Strony
88--101
Opis fizyczny
Bibliogt. 53 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China, liyq@lzb.ac.cn
autor
  • Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
autor
  • Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
autor
  • School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
autor
  • Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
autor
  • Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
autor
  • Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
Bibliografia
  • [1] An H., Li G. 2014 - Differential effects of grazing on plant functional traits in the desert grassland - Pol. J. Ecol. 62: 239-251.
  • [2] Bernhard-Reversat F. 1981 - Participation of light and organomineral fractions of soil organic matter in nitrogen mineralization in sahelian savanna soil - Zbl. Bakt. II Abt. 136: 281-290.
  • [3] Cao C.Y., Jiang D.M., Teng X.H., Jiang Y., Liang W.J., Cui Z.B. 2008 - Soil chemical and microbiological properties along a chronosequence of Caragana microphylla Lam. plantations in the Horqin sandy land of northeast China - Appl. Soil Ecol. 40: 78-85.
  • [4] Chen Y.P., Li Y.Q., Awada T., Han J.J., Luo Y.Q. 2012 - Carbon sequestration in the total and light fraction soil organic matter along a chronosequence in grazing exclosures in a semiarid degraded sandy site in China - J. Arid Land, 4:411-419.
  • [5] Chen F.S., Zeng D.H., Fahey T.J., Liao P.P. 2010 - Organic carbon in soil physical fractions under different-aged plantations of Mongolian pine in semiarid region of northeast China - Appl. Soil Ecol. 44: 42-48.
  • [6] Christensen B.T. 2001 - Physical fractionation of soil and structural and functional complexity in organic matter turnover - Eur. J. Soil Sci. 52: 345-353.
  • [7] Cunningham S.C., Metzeling K.J., MacNally R., Thomson J.R., Cavagnaro T.R. 2012 - Changes in soil carbon of pastures after afforestation with mixed species: sampling, heterogeneity and surrogates - Agric. Ecosyst. Environ. 158: 58-65.
  • [8] Davis M.R., Condron L.M. 2002 - Impact of grassland afforestation on soil carbon in New Zealand: a review of paired-site studies - Austral. J. Soil Res. 40: 675-690.
  • [9] De Gryze S., Six J., Paustian K., Morris S.J., Paul E.A., Merckx R. 2004 - Soil organic carbon pool changes following land-use conversions - Global Change Biol.10: 1120-32.
  • [10] Ellert B.H., Bettany J.R. 1995 - Calculation of organic matter and nutrients stored in soils under contrasting management regimes - Can. J. Soil Sci. 75: 529-538.
  • [11] FAO (Food and Agriculture Organization of the United Nations) 2004 - Carbon sequestration in drylands - World Soil Resources Report 102FAO, Rome, Italy.
  • [12] FAO (Food and Agriculture Organization of the United Nations) 2006 - FAO/IUSS Working Group WRB, World reference base for soil resources 2006 - World Soil Resources Reports 103.FAO, Rome, Italy.
  • [13] Feller C., Beare M.H. 1997 - Physical control of soil organic matter dynamics in the tropics - Geoderma, 79:69-116.
  • [14] Grandy A.S., Robertson G.P. 2007 - Land-use intensity effects on soil organic carbon accumulation rates and mechanisms - Ecosystems, 10: 58-73.
  • [15] Haynes R.J. 2000 - Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand - Soil Biol. Biochem. 32:211-219.
  • [16] He N.P., Zhang Y.H., Dai J. Z., Han X. G., Baoyin T., Yu G.R. 2012 - Land-use impact on soil carbon and nitrogen sequestration in typical steppe ecosystems, Inner Mongolia - J. Geogr. Sci. 22: 859-873.
  • [17] Helldén U., Tottrup C. 2008 - Regional desertification: a global synthesis - Global Planet. Change, 64: 169-176.
  • [18] IPCC 2007 - Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Eds: R.K. Pachauri, A. Reisinger] - IPCC, Geneva, Switzerland.
  • [19] Janzen H.H., Campbell C.A., Brandt S.A., Lafond G.P., Townley-Smith L. 1992 - Light-fraction organic matter in soils from long-term crop rotations - Soil Sci. Soc. Am. J. 56: 1799-1806.
  • [20] Jobbágy E.G., Jackson R.B. 2000 - The vertical distribution of soil organic carbon and its relation to climate and vegetation - Ecol. Appl. 10: 423-436.
  • [21] Kirschbaum M.U.F. 2000 - Will changes in soil organic carbon act as a positive or negative feedback on global warming? - Biogeochemistry, 48:21-51.
  • [22] Lai R. 1996 - Deforestation and land-use effects on soil degradation and rehabilitation in western Nigeria. II. Soil chemical properties - Land Degrad. Develop. 7: 87-98.
  • [23] Lai R. 2001 - Potential of desertification control to sequester carbon and mitigate the greenhouse effect - Glim. Change. 51: 35-72.
  • [24] Lai R. 2009 - Sequestering carbon in soils of arid ecosystems - Land Degrad. Develop. 20: 441-454.
  • [25] Li Y.Q., Brandle J., Awada T., Chen Y.P., Han J.J., Zhang F.X., Luo Y.Q. 2013 - Accumulation of carbon and nitrogen in the plant-soil system after afforestation of active sand dunes in Chinas Horqin Sandy Land - Agric. Ecosyst. Environ. 177: 75-84.
  • [26] Li Y.Q., Zhao X.Y., Chen Y.P., Luo Y.Q., Wang S.K. 2012 - Effects of grazing exclusion on carbon sequestration and the associated vegetation and soil characteristics at a semi-arid desertified sandy site in Inner Mongolia, northern China - Can. J. Soil Sci. 92: 807-819.
  • [27] Liang A.Z., Yang X.M., Zhang X.P., McLaughlin N., Shen Y, Li WE 2009 - Soil organic carbon changes in particle-size fractions following cultivation of Black soils in China - Soil Till. Res. 105:21-26.
  • [28] Liu J., Zhang Y., Wu B., Qin S., Lai Z. 2014 - Changes in soil organic carbon and its density fractions after shrub-planting for desertification control - Pol. J. Ecol. 62: 205-216.
  • [29] Liu X.M., Zhao H.L., Zhao A.F. 1996 - Characteristics of sandy environment and vegetation in the Horqin Sandy Land - Science Press, Beijing, China (in Chinese).
  • [30] Malagnoux M. 2007 - Arid Land Forests of the World: Global Environmental Perspectives - Available on: ftp://ftp.fao.org/docrep/fao/010/ah836e/ah836e00.pdf.
  • [31] Nelson D.W., Sommers L.E. 1982 - Total carbon, organic carbon and organic matter (In: Methods of soil analysis, Eds: A.L., Miller R.H., Keeney D.R) - American Society of Agronomy, Madison, WI. pp. 539-577.
  • [32] Niu R., Zhao X., Liu J., Qin Y. 2013 - Effects of land use/cover change on topsoil carbon and nitrogen in the middle of Heihe River basin -Pol. J. Ecol. 67: 43-55.
  • [33] Noble A.D., Little I.P., Randall P.J. 1999 - The influence of Pinus radiata, Quercus suber, and improved pasture on soil chemical properties - Austral. J. Soil Res. 37: 509-526.
  • [34] Nosetto M.D., Jobbágy E.G., Paruelo J.M. 2006 - Carbon sequestration in semi-arid rangelands: comparison of Pinus ponderosa plantations and grazing exclusion in NW Patagonia - J. Arid Environ. 67: 142-156.
  • [35] Parker J.L., Fernandez I.J., Rustad L.E., Norton S.A. 2002 - Soil organic matter fractions in experimental forested watersheds - Water Air SoilPollut. 138: 101-121.
  • [36] Pei S.F., Fu H., Wan C.G. 2008 - Changes in soil properties and vegetation following exclosure and grazing in degraded Alxa desert steppe of Inner Mongolia, China - Agric. Ecosyst. Environ. 124: 33-39.
  • [37] Perez-Quezada J.F., Delpiano C.A., Snyder K.A., Johnson D.A., Franck N. 2011 - Carbon pools in an arid shrubland in Chile under natural and afforested conditions - J. Arid Environ. 75: 29-37.
  • [38] Poeplau C., Don A. 2013 - Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe - Geoderma, 192: 189-201.
  • [39] Robles M.D., Burke LC. 1998 - Soil organic matter recovery on Conservation Reserve Program fields in Southeastern Wyoming - Soil Sci. Soc. Amer. J. 62: 725-730.
  • [40] Sasaki T., Okubo S., Okayasu T., Jamsran U., Ohkuro T., Takeuchi K. 2011 - Indicator species and functional groups as predictors of proximity to ecological thresholds in Mongolian rangelands - Plant Ecol. 212: 327-342.
  • [41] Sequeira C.H., Alley M.M., Jones B.P. 2011 - Evaluation of potentially labile soil organic carbon and nitrogen fractionation procedures - Soil Biol. Biochem. 43: 438-444.
  • [42] Shrestha G., Stahl P.D. 2008 - Carbon accumulation and storage in semi-arid sagebrush steppe: effects of long-term grazing exclusion - Agric. Ecosyst. Environ. 125: 173-181.
  • [43] Six J., Callewaert P., Lenders S., De Gryze S., Morris S.J., Gregorich E.G., Paul E.A., Paustian K. 2002 - Measuring and understanding carbon storage in afforested soils by physical fractionation - Soil Sci. Soc. Am. J. 66: 1981-1987.
  • [44] Soon Y.K., Arshad M.A., Haq A., Lupwayi N. 2007 - The influence of 12 years of tillage and crop rotation on total and labile organic carbon in a sandy loam soil - Soil Till. Res. 95: 38-46.
  • [45] Su Y.Z., Zhao H.L. 2003 - Soil properties and plant species in an age sequence of Caragana microphylla plantations in the Horqin Sandy Land. North China - Ecol. Eng. 20: 223-235.
  • [46] Swanston C., Caldwell B.A., Homann P.S., Ganio L., Sollins P. 2002 - Carbon dynamics during a long-term incubation of separate and recombined density fractions from seven forest soils - Soil Biol. Biochem. 34: 1121-1130.
  • [47] Trumbore S. 2009 - Radiocarbon and soil carbon dynamics - Ann. Rev. Earth Planet. Sci. 37:47-66.
  • [48] UNCED (United Nations Conference on Environment and Development) 1992 - Earth Summit Agenda 21: Programme of Action for Sustainable Development - UNEP, New York.
  • [49] Verón S.R., Paruelo J.M., Oesterheld M. 2006 - Assessing desertification - J. Arid Environ. 66: 751-763.
  • [50] Wofsy S.C. 2001 - Where has all the carbon gone? - Science, 292: 2261-2263.
  • [51] Zhao H.L., Zhao X.Y., Zhou R.L., Zhang T.H., Drake S. 2005 - Desertification processes due to heavy grazing in sandy rangeland, Inner Mongolia - J. Arid Environ. 62: 309-319.
  • [52] Zhou R.L., Li Y.Q., Zhao H.L., Drake S. 2008 - Desertification effects on C and N content of sandy soils under grassland in Horqin, northern China - Geoderma, 145: 370-375.
  • [53] Zuo X., Zhao X., Zhao H., Zhang T., Wang S., Knops J., Kochsiek A. 2013 - Spatial pattern and heterogeneity of soil seed bank in sandy grasslands under restoration and grazing in Horqin Sand Land, Northern China - Pol. J. Ecol. 61: 369-379.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37257a68-13a9-47ed-add7-8beda8e1ec4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.