Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 1, no. 1 | 217--227
Tytuł artykułu

Bimodality and Long-Term Trends of the Extreme Values of Air Temperature

Treść / Zawartość
Warianty tytułu
PL
Bimodalność i długoterminowe trendy wartości ekstremalnych temperatury powietrza
Języki publikacji
EN
Abstrakty
EN
Histograms of air temperature with a bimodal shape are commonly observed in many regions of the world. In this study, we investigate the causes of bimodality in the histograms of daily temperature series (minimum, average, and maximum) for selected climatological stations in Slovakia. Our findings suggest that in the Central European region, the bimodal shape of air temperature histograms is mainly due to the latent heat of freezing, as the surface of snow and ice and the air are thermally coupled. The asymmetry in the air temperature histograms is due to the lower mass heat capacity of ice compared to water and air. The energy-intensive latent heat of conversion of ice to water (and vice versa) results in the more frequent occurrence of ground-layer air temperatures around the freezing point, leading to the formation of the observed local maximum. This has farreaching implications, such as the calculation of the annual mean air temperature at climatological stations. When calculating the average air temperature, negative temperatures should be given less weight than positive temperatures. Temperatures around 0-6°C should be given higher weight. This may also explain why Arctic regions are experiencing more significant warming than equatorial regions. In the second part of this paper, we analyze the long-term trends of selected temperature indices for the climatological station at Hurbanovo (Slovakia) from 1871 to 2020. Our results indicate statistically significant changes in all temperature indices, with indices related to cold temperatures increasing more significantly than those associated with high temperatures. Finally, study examines theoretical probability distributions to estimate T-year temperatures for temperature indices at the Hurbanovo climate station in Slovakia. The analysis includes three time periods (1901–1960, 1961– 2020, and 1991–2020) and reveals significant changes in temperature indices at the Hurbanovo station. The 100-year temperature of TN,min was –35.75°C in 1901–1960, –28.69°C in 1961–2020, and –26.52°C in 1991–2020. The 100-year temperature of TX,max was 39.4°C in 1901–1960 and 39.63°C in 1961–2020. TN,min showed the most significant changes, with the 100-year temperature increasing by up to 7.06°C in 1961–2020 and up to 9.23°C in 1991–2020.
Wydawca

Rocznik
Strony
217--227
Opis fizyczny
Bibliogr. 22 poz., tab., wykr.
Twórcy
autor
  • Comenius University in Bratislava, Faculty of Mathematics, Physics, and Informatics, Mlynská dolina, 842 48 Bratislava, Slovakia;
  • Slovak Academy of Sciences, Institute of Hydrology, Dúbravska cesta 9, 841 04 Bratislava, Slovakia, pekarova@uh.savba.sk
  • Slovak Academy of Sciences, Institute of Hydrology, Dúbravska cesta 9, 841 04 Bratislava, Slovakia
Bibliografia
  • 1. A. Gasparrini, Y. Guor, M. Hashizume, E. Lavigne; A. Zanobetti, J. Schwartz, A. Tobias, S. Tong, J. Rocklöv, B. Forsberg, M. Leone, M. De Sario, M. Bell, I. L. Guo, C. Wu, H. Kan, S. M. Yi, M. de Sousa, Z. S. Coelho, P. Hilario, N. Saldiva, Y. Honda, H. Kim and B. Armstrong, “Mortality risk attributable to high and low ambient temperature: a multicountry observational study”, Lancet 386, is. 9991, 369–375 (2015). https://doi.org/10.1016/S0140-6736(14)62114-0
  • 2. H. Y. Cho and S. T. Jeong, “Estimation and Comparative Analysis on the Distribution Functions of Air and Water Temperatures in Korean Coastal Seas”, Journal of Korean Society of Coastal and Ocean Engineers 28, 3, 171–176 (2016). https://doi.org/10.9765/KSCOE.2016.28.3.171
  • 3. C. I. Garfinkel and N. Harnik, “The non-Gaussianity and spatial asymmetry of temperature extremes relative to the storm track: The role of horizontal advection”, J. Clim. 30, 2, 445–464 (2017). https://doi.org/10.1175/JCLI-D-15-0806.1
  • 4. M. Matiu, D. P. Ankerst and A. Menzel, “Asymmetric trends in seasonal temperature variability in instrumental records from ten stations in Switzerland, Germany and the UK from 1864 to 2012”, Int. J. Climatol. 36, 13–27 (2015). https://doi.org/10.1002/joc.4326
  • 5. C. Shi, Z. H. Jiang, L. H. Zhu, X. Zhang, Y. Y. Yao and L. Lie, “Risks of temperature extremes over China under 1.5°C and 2°C global warming”, Adv. Clim. Change Res. 11, 3, 172–184 (2020). https://doi.org/10.1016/j.accre.2020.09.006
  • 6. S. Petrovič, Climate Conditions of Hurbanovo (Slovakia) (Hydrometeorological Institute, Prague, Czech Republic, 1960, in Slovak), pp. 138–161.
  • 7. M. Konček, Climate of the Tatra Mountains (VEDA, Bratislava, Slovakia, 1974, in Slovak), 885 p.
  • 8. M. Lapin, “Detection of changes in the regime of selected climatological elements at Hurbanovo”, Contributions to Geophysics and Geodesy 34, 2, 169–193 (2004).
  • 9. P. Faško, M. Lapin and J. Pecho, “20-year extraordinary climatic period in Slovakia”, Meteorologický časopis 11, 99–105 (2008). https://www.shmu.sk/File/ExtraFiles/KMIS/pub_cinnost/Lapin_et_al_2008.pdf
  • 10. D.Halmová, P. Pekárová, J. Olbřímek, P. Miklánek and J. Pekár, “Precipitation regime and temporal changes in the Central Danubian lowland region”, Advances in Meteorology Article ID 715830, 12 pages (2015). https://doi.org/10.1155/2015/715830
  • 11. P. Pekárová, P. Miklánek, D. Halmová, M. Onderka and J. Pekár, “Long-term trend and multi-annual variability of water temperature in the pristine Bela River basin (Slovakia)”, J. Hydrol. 400, 3-4, 333–340 (2011). https://doi.org/10.1016/j.jhydrol.2011.01.048
  • 12. J. Kyselý, “Mortality and displaced mortality during heat waves in the Czech Republic”, Int J Biometeorol. 91–97 (2004). https://doi.org/10.1007/s00484-004-0218-2
  • 13. L. V. Alexander, X. Zhang, T. C. Peterson, J. Caesar, B. Gleason, A. M. G. Klein Tank, M. Haylock, D. Collins, B. Trewin, F. Rahimzadeh, A. Tagipour, K. Rupa Kumar, J. Revadekar, G. Griffiths, L. Vincent, D. B. Stephenson, J. Burn, E. Aguilar, M. Brunet, M. Taylor, M. New, P. Zhai, M. Rusticucci and J. L. Vazquez-Aguirre, “Global observed changes in daily climate extremes of temperature and precipitation”, J. Geophys. Res. 111, D05109 (2006). https://doi.org/10.1029/2005JD006290
  • 14. P. Liang, Z. W. Yan and Z. Li, “Climatic warming in Shanghai during 1873–2019 based on homogenised temperature records”, Adv. Clim. Change Res. 1, 4, 496–506 (2022). https://doi.org/10.1016/j.accre.2022.05.006
  • 15. J. Spinoni, S. Szalai, T. Szentimrey, M. Lakatos, Z. Bihari, A. Nagy, A. Németh, T. Kovács, D. Mihic, M. Dacic, P. Petrovic, A. Kržič, J. Hiebl, I. Auer, J. Milkovic, P. Štepánek, P. Zahradnícek, P. Kilar, D. Limanowka, R. Pyrc, S. Cheval, M. V. Birsan, A. Dumitrescu, G. Deak, M. Matei, I. Antolovic, P. Nejedlík, P. Štastný, P. Kajaba, O. Bochnícek, D. Galo, K. Mikulová, Y. Nabyvanets, O. Skrynyk, S. Krakovska, N. Gnatiuk, R. Tolasz, T. Antofie and J. Vogt, “Climate of the Carpathian Region in the period 1961–2010: climatologies and trends of 10 variables”, Int J Climatol. 35, 1322–1341 (2014). https://doi.org/10.1002/joc.4059.
  • 16. L. Labudová, P.Faško and G. Ivaňáková, “Changes in climate and changing climate regions in Slovakia”, Morav. Geogr. Rep. 23, 71–82 (2015). https://doi.org/10.1515/mgr-2015-0019
  • 17. U. P. Singh and A. K. Mittal, “Testing reliability of the spatial Hurst exponent method for detecting a change point”, J. Water Clim. Change 12, 8, 3661–3674 (2021). https://doi.org/10.2166/wcc.2021.097
  • 18. P. Miklánek, M. Martincová, P. Pekárová and I. Mészároš, “Seasonal changes of the soil temperature in different depths,” in Hydrology and Water Resources, Soil, Forest Ecosystems, Marine and Ocean Ecosystems, The 13th International Multidisciplinary Scientific GeoConference SGEM 2013 (SGEM, Sofia, Bulgaria, 2013), pp. 285-292. ISBN 978-619-7105-02-5. ISSN 1314-2704.
  • 19. T. Vihma, “Atmosphere-Snow/Ice Interactions,” in Encyclopedia of Snow, Ice and Glaciers. Encyclopedia of Earth Sciences Series, edited by V. P. Singh, P. Singh and U. K. Haritashya (Springer, Dordrecht, Netherlands, 2011), pp. 66–75. Online ISBN 978-90-481-2642-2. https://doi.org/10.1007/978-90-481-2642-2
  • 20. E. Reschenhofer, “The Bimodality Principle”, Journal of Statistics Education 9, 1, 1–15 (2001). https://doi.org/10.1080/10691898.2001.11910644
  • 21. M. Krock, J. Bessac, M. L. Stein and A. H. Monahan, “Nonstationary seasonal model for daily mean temperature distribution bridging bulk and tails”, Weather and Climate Extremes 36, 100438 (2022). https://doi.org/10.1016/j.wace.2022.100438
  • 22. R. Brázdil, M. Budíkova, I. Auer, R. Bohm, T. Cegnar, P. Faško, M. Lapin, M. Gajič-Čapka, K. Zaninovič, E. Koleva, T. Niedzwiedz, Z. Ustrnul, S. Szalai and R. O. Weber, “Trends of maximum and minimum daily temperatures in Central and Southeastern Europe”, International Journal of Climatology 16, 7, 765–782 (1996). https://doi.org/10.1002/(SICI)1097-0088(199607)16:7<765::AID-JOC46>3.0.CO;2-O
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-371bcaa7-4484-47b3-bdf3-c89a6a2411ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.