Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 14, no. 1 | 85--94
Tytuł artykułu

Assessment of the waste management system in Krakow as an element of circular economy

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Building a waste management system requires considering many aspects for the assessment of its functioning. The transition from a linear system to a circular economy requires taking into account not only technological but also economic and social factors. The waste management system in Krakow is a comprehensive solution that considers all factors and aspects, allowing for the assessment of technology, economic justification of costs and social acceptance. The paper presents a comprehensive structure of the system with all the factors enabling the transition from a linear to a circular economy. In Kraków, over 200,000 tonnes of mixed waste are collected annually and almost 150,000 tonnes of selectively collected waste. Such potential allows for a landfill reduction below 10% by weight and the achievement of the required recycling levels.
Wydawca

Rocznik
Strony
85--94
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
Bibliografia
  • [1] Analysis of the state of municipal waste management in the Municipality of Krakow, https://www.bip.krakow.pl/zalaczniki/dokumenty/n/271689/karta.
  • [2] Reports of the Mayor of the City of Krakow on the implementation of tasks in the field of municipal waste management https://www.bip.krakow.pl/?sub_dok_id=60884.
  • [3] Act on maintaining cleanliness and order in municipalities (Journal of Laws 2020.1439) of 2020.08.24.
  • [4] Waste Act (Journal of Laws 2020.797) of May 2020, 04.
  • [5] Christensen, T. (2011). Solid Waste Technology and Management, John Wiley & Sons, ISBN 9781405175173.
  • [6] Cossu, R. (2009). From triangles to cycles, Waste Management, 29(12), 2915-2917. DOI: 10.1016/j.wasman.2009.09.002.
  • [7] den Boer, E., den Boer, J., & Jager, J. (2005). Waste management planning and optimization, Ibidem, Stuttgart.
  • [8] Ławińska, K., Szufa, S., Obraniak, A., Olejnik, T., Siuda, R., Kwiatek, J., & Ogrodowczyk D. (2020). Disc Granulation Process of Carbonation Lime Mud as a Method of Post-Production Waste Management, Energies, 13, 3419, doi:10.3390/en13133419
  • [9] Garfe, M., Tondelli, S., & Bonoli, A. (2009). Multicriteria decision analysis for waste management in Saharawi refugee camps, Waste Management, 29, 2729-2739.
  • [10] Generowicz, A., Kowalski, Z., Banach, M., & Makara, A (2012). A Glance at the World, Waste Management, 32(2), 349-350.
  • [11] Gaska, K., Generowicz, A., Zimoch, I., Ciuła, J., & Siedlarz, D. (2018). A GIS based graph oriented algorithmic model for poly-optimization of waste management system, Architecture Civil Environmental Engineering ACEE, 11(4), 151-159.
  • [12] Wilson, E., McDougall, F., & Willmore, J. (2004). Euro-trash: searching Europe for a more sustainable approach to waste management, Resources, Conservation and Recycling, 31(4), 327-346.
  • [13] Morrissey, A.J., & Browne, J. (2004). Waste management models and their application to sustainable waste management, Waste Management, 24, 297-308.
  • [14] Acerbi, F., & Taisch,M. (2020). A literature review on circular economy adoption in the manufacturing sector, Journal of Cleaner Production, 283, 123086. https://doi.org/10.1016/j.jclepro.2020.123086
  • [15] Kajda-Szcześniak, & M., Jaworski, T. (2017). Comparison of fuel and emission properties of scrap wood and waste fuels. Przemysł Chemiczny, 96(10), 2121-2123.
  • [16] Balcerzak, W., Generowicz, A., & Mucha, Z. (2014). Application of Multi-Criteria Analysis for Selection of Reclamation Method for Hazardous Waste Landfill, Polish Journal of Environmental Studies, 23(3), 983-987.
  • [17] Gaska, K., & Generowicz, A. (2020). SMART Computational Solutions for the Optimization of Selected Technology Processes as an Innovation and Progress in Improving Energy Efficiency of Smart Cities - A Case Study, Energies, 13, 3338.
  • [18] Kowalski, D., Kowalska, B., Bławucki, T., Suchorab, P., & Gaska, K. (2019). Impact Assessment of Distribution Network Layout on the Reliability of Water Delivery. Water, 11, 480.
  • [19] Gubanova, E., Kupinets, L., Deforzh, H., Koval, V., & Gaska, K. (2019). Recycling of polymer waste in the context of developing circular economy. Architecture Civil Engineering Environment ACEE, 12(4), 99-108, DOI: 10.21307/ACEE-2019-055.
  • [20] Koval, V., Mikhno, I., Hajduga, G., & Gaska, K. (2019). Economic efficiency of biogas generation from food product waste, E3S Web of Conferences, 100, 00039. DOI: 10.1051/e3sconf/201910000039.
  • [21] Ciuła, J., Kozik, V., Generowicz, A., Gaska, K., Bak, A., Paździor, M., & Barbusiński, K. (2020). Emission and Neutralization of Methane from a Municipal Landfill-Parametric Analysis, Energies, 13, 6254, DOI: 10.3390/en13236254.
  • [22] Ciuła J., Gaska K., Iljuczonek Ł., Generowicz A., & Koval V. (2019). Energy efficiency economics of conversion of biogas from the fermentation of sewage sludge to biomethane as a fuel for automotive vehicles. Architecture Civil Engineering Environment ACEE, 12(2), 131-140, DOI:10.21307/ACEE-2019-029.
  • [23] Werle, S. (2012). A reburning process using sewage sludge-derived syngas, Chemical Papers, 66(2), 99-107.
  • [24] Jaworski, T., & Kajda-Szcześniak, M. (2019). Research on the kinetics of pyrolysis of wood-based panels in terms of waste management. Energies, 12(19), 1-13.
  • [25] Jaworski, T., Pikoń, K., Kajda-Szcześniak, M. (2018). Experimental and theoretical modeling of waste combustion in a chamber with a moving grate, Chemical and Process Engineering, 39(1), 3-14.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-371717af-85f4-4cec-855b-5ed8ea0dfbdb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.