Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2024 | vol. 42, iss. 4 | 301--311
Tytuł artykułu

Efficiency coefficient of wind installations

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study examines the main trends in the modern development of wind energy, addressing the critical tasks and proposing solutions for advancing wind energy technology. It includes theoretical calculations of the efficiency factor of wind turbines, particularly focusing on the Betz limit, which traditionally sets an upper bound on their efficiency. The research highlights the fallibility of Betz's limit calculations in both physics and mathematics, challenging its long-held assumptions. A novel formula for the true dependence of wind turbine efficiency on the utilized energy of the wind flow is derived, providing a more accurate representation of their performance. This new formula is supported by a graph illustrating the relationship between wind energy input and turbine efficiency. Additionally, the study explores various strategies and innovative approaches to enhance the efficiency of wind turbines, aiming to maximize their potential in harnessing wind energy. These findings contribute to the ongoing efforts to improve renewable energy technologies and increase the viability of wind power as a sustainable energy source.
Wydawca

Czasopismo
Rocznik
Strony
301--311
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
  • Dnipro University of Technology, 19 Yavornytskoho Ave., 49005, Dnipro, Ukraine
  • Dnipro University of Technology, 19 Yavornytskoho Ave., 49005, Dnipro, Ukraine
  • The M.S. Poliakov Institute of Geotechnical Mechanics NAS of Ukraine, 15 Simferopolska Street, Dnipro, Ukraine, 49000
autor
  • The M.S. Poliakov Institute of Geotechnical Mechanics NAS of Ukraine, 15 Simferopolska Street, Dnipro, Ukraine, 49000
  • Dnipro University of Technology, 19 Yavornytskoho Ave., 49005, Dnipro, Ukraine
  • The M.S. Poliakov Institute of Geotechnical Mechanics NAS of Ukraine, 15 Simferopolska Street, Dnipro, Ukraine, 49000
Bibliografia
  • [1] Darvish Falehi A., & Rafiee M.: Maximum efficiency of wind energy using novel Dynamic Voltage Restorer for DFIG based Wind Turbine. Energy Reports, 2018, 4, 308–322. https://doi.org/10.1016/j.egyr.2018.01.006
  • [2] Pereira S., Ferreira P., & Vaz A. I. F.: Short-term electricity planning with increase wind capacity. Energy, 2014, 69, 12–22. https://doi.org/10.1016/j.energy.2014.01.037
  • [3] Mahfouz M. Y., & Cheng P.: A passively self‐adjusting floating wind farm layout to increase the annual energy production. Wind Energy, 2022,26(3), 251–265. Portico. https://doi.org/10.1002/we.2797
  • [4] Leahy R.: Proposed circuit design could increase switching efficiency in wind energy grids. Scilight, 2018, 34, 23-41. https://doi.org/10.1063/1.5053101
  • [5] Khomenko O., Rudakov D., Lkhagva T., Sala D., Buketov V., & Dychkovskyi R.: Managing the horizon-oriented in-situ leaching for the uranium deposits of Mongolia. Rudarsko-Geološko-Naftni Zbornik, 2023, 38(5), 49–60. https://doi.org/10.17794/rgn.2023.5.5
  • [6] Somoano M., & Huera-HuarteF. J.: Bio-inspired blades with local trailing edge flexibility increase the efficiency of vertical axis wind turbines. Energy Reports, 2022, 8, 3244–3250. https://doi.org/10.1016/j.egyr.2022.02.151
  • [7] Berg E.: Wind Energy Conversion. Energy Efficiency and Renewable Energy Handbook, 2015, 1371–1416. https://doi.org/10.1201/b18947-52
  • [8] Kondoh J.: Autonomous frequency regulation by controllable loads to increase acceptable wind power generation. Wind Energy, 2009, 13(6), 529–541. Portico. https://doi.org/10.1002/we.375
  • [9] Dychkovskyi R., DyczkoA., & Borojević Šoštarić S.: Foreword: Physical and Chemical Geotechnologies –Innovations in Mining and Energy. E3S Web of Conferences, 2024, 567, 00001. https://doi.org/10.1051/e3sconf/202456700001
  • [10] Dychkovskyi R., Saik P., Sala D., & Cabana E. C.: The current state of the non-ore mineral deposits mining in the concept of the Ukraine reconstruction in the post-war period. Mineral Economics, 2024, 37(3), 589–599. https://doi.org/10.1007/s13563-024-00436-z
  • [11] Betz A.: Introduction to the Theory of Flow Machines. D. G. Randall, Trans., Oxford. Pergamon Press, 1966, 165 p.
  • [12] Bulat A.F., Mineev S.P., Antonchyk V.E., Maltseva V.E., Demchenko S.V.:Patent UA 124749 F03D 3/04 publ. 11/10/2021 Bul. No. 45 Vertical-axial wind turbine
  • [13] Bulat A.F., Mineev S.P., Antonchyk V.E., Chelkan V.V.:Patent UA 153208 F03D 3/04 publ. 06/07/2023 Bul. No. 23 Biaxial wind turbine
  • [14] Mineev S.P., Antonchyk V.E., Maltseva V.E.:Patent UA 154098 F03D 3/06 publ. 11.10.2023 Bul. No. 41 Vertical-axial wind turbine.
  • [15] Lam G. C. K.:Wind Energy Conversion Efficiency Limit. Wind Engineering, 2006, 30(5), 431–437. https://doi.org/10.1260/030952406779502687
  • [16] Kazemzadeh E., Fuinhas J. A., Shirazi M., Koengkan M., & Silva N.:Does economic complexity increase energy intensity? Energy Efficiency, 2023, 16(4). https://doi.org/10.1007/s12053-023-10104-w
  • [17] BarthelmieR. J., & Jensen L. E.:Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm. Wind Energy, 2010, 13(6), 573–586. Portico. https://doi.org/10.1002/we.408
  • [18] Max L., & Lundberg S.: System efficiency of a DC/DC converter‐based wind farm. Wind Energy, 2007, 11(1), 109–120. Portico. https://doi.org/10.1002/we.25
  • [19] Xydis G., & Mihet-Popa L.: Wind energy integration via residential appliances. Energy Efficiency, 2016, 10(2), 319–329. https://doi.org/10.1007/s12053-016-9459-2
  • [20] Wiser R., & Bolinger M.: Wind Technologies Market Report. Office of Scientific and Technical Information (OSTI), 2011. https://doi.org/10.2172/1219205
  • [21] Smith R. B.: Gravity wave effects on wind farm efficiency. Wind Energy, 2010, 13(5), 449–458. Portico. https://doi.org/10.1002/we.366
  • [22] Saik P., Dychkovskyi R., Lozynskyi V., Falshtynskyi V., Cabana E. C., & Hrytsenko L.: Chemistry of the Gasification of Carbonaceous Raw Material. Materials Science Forum, 2021, 1045, 67–78. https://doi.org/10.4028/www.scientific.net/msf.1045.67
  • [23] Riegels F., & Backhaus H.: ALBERT BETZ 65 Jahre/ERNST LÜBCKE 60 Jahre. Physikalische Blätter, 1951, 7(1), 32–33. Portico. https://doi.org/10.1002/phbl.19510070107
  • [24] Dolgopolov A. V., Kazancev D. A., Markin I. V., Orlova O. A., & Shalaev S. V.: The Modern Method of Creating Dynamically Scaled Models to Study Aircraft Flutter Characteristics. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2020, 162(4), 441–454. https://doi.org/10.26907/2541-7746.2020.4.441-454
  • [25] Krishna M., FraserE. J., Wills R. G. A., & Walsh F. C.: Developments in soluble lead flow batteries and remaining challenges: An illustrated review. Journal of Energy Storage, 2018, 15, 69–90. https://doi.org/10.1016/j.est.2017.10.020
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-371258bc-1998-4472-87c6-73e24af8d567
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.