Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 41, No. 2 | 311--324
Tytuł artykułu

Simulation of the influence of cutting speed and feed rate on tool life in hard turning of AISI 4140 steel

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tool life performances of Al2O3+TiC and TiN+AlCrN tool inserts were investigated experimentally under different cutting conditions in turning AISI 4140 steel. The tool life model is defined in accordance with a maximum surface roughness of 0.8 μm for the tool life criterion. The relationships between machining factors (i.e., cutting speed and feed rate) and tool life were obtained by Taylor’s formular. The sensitivity of cutting speed and feed rate to tool life was evaluated by Monte Carlo simulation. The results showed that turning with high cutting speeds and feed rates decreased the tool life of both inserts. At different cutting speeds and feed rates, Al2O3+TiC exhibited better tool life performance than TiN+AlCrN. In addition, the simulation results indicated the average tool life of Al2O3+TiC was approximately 40% greater than that of TiN+AlCrN by varying cutting speeds below and above the cutting speed of 220 m/min while keeping the feed rate constant at 0.06 mm/rev. Similarly, when keeping the cutting speed constant at 220 m/min, the average tool life of Al2O3+TiC was approximately 45% greater than that of TiN+AlCrN by varying feed rates below and above the feed rate of 0.06 mm/rev. Variations of tool life values by varying cutting speeds were more sensitive than those by varying feed rates for both tool inserts.
Wydawca

Rocznik
Strony
311--324
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Department of Industrial Technology, Faculty of Industrial Education, Rajamangala University of Technology Krungthep, Bangkok 10120 Thailand
  • Department of Industrial Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002 Thailand, charn_sa@kku.ac.th
Bibliografia
  • [1] John R, Lin R, Jayaraman K, Bhattacharyya D. Modified Taylor’s equation including the effects of fiber characteristics on tool wear when machining natural fiber composites. Wear. 2021;468–469: No. 203606, doi: 10.1016/j.wear.2020.203606.
  • [2] Farid AA, Sharif S, Idris MH. Performance and wear mechanisms of uncoated, TiAlN, and AlTiN-coated carbide tools in high-speed drilling of Al-Si alloy. Int J Adv Manuf Technol. 2021;113:2671–84. doi: 10.1007/s00170-021-06663-w.
  • [3] Milan JCG, Machado AR, Tomaz IV, da Silva LRR, Barbosa CA, Mia M, Pimenov DY. Effects of calcium-treatment of a plastic injection mold steel on the tool wear and power consumption in slot milling. J Mater Res Technol. 2021;13:1103–14, doi: 10.1016/j.jmrt.2021.05.021.
  • [4] Kuo CP, Su SC, Chen SH. Tool life and surface integrity when milling inconel718 with coated cemented carbide tools. J Chin Inst Eng, Trans Chin Inst Eng, Series A. 2021;33(6):915–22. doi: 10.1080/02533839.2010.9671680.
  • [5] Santos ALB, Dos Duarte MAV, Abrao AM, Machado AR. An optimization procedure to determine the coefficients of the extended Taylor’s equation in machining. Int J Mach Tools Manuf. 1999;39(1):17–31, doi: 10.1016/S0890-6955(98)00025-X.
  • [6] Poulachon G, Moisan A, Jawahir IS. Tool-wear mechanisms in hard turning with polycrystalline cubic boron nitride tools. Wear. 2001;250:576–86. doi: 10.1016/S0043-1648(01)00609-3.
  • [7] El-Tamimi AM, El-Hossainny TM. Investigating the tool life, cutting force components, and surface roughness of AISI 302 stainless steel material under oblique machining. Mater Manuf Proc. 2008;23:427–38. doi: 10.1080/10426910801974846.
  • [8] Kurniawan D, Yusof NM, Sharif S. Hard machining of stainless steel using wiper coated carbide: tool life and surface integrity. Mater Manuf Proc. 2010;25:370–377. doi: 10.1080/10426910903179930.
  • [9] Xiong J, Guo Z, Yang M, Wan W, Dong G. Tool life and wear of WC–TiC–Co ultrafine cemented carbide during dry cutting of AISI H13 steel. Ceram Int. 2013;39:337– 46, doi: 10.1016/j.ceramint.2012.06.031.
  • [10] Batista M, Davim P, Salguero J, Gomez-Parra A, Marcos M. Taylor’s model based analysis of turning inserts tool-life in the dry turning of UNS R56400 alloy. ASME IMECE. 2014; 1. No. 111737, doi: 10.1115/IMECE2014-38710.
  • [11] Correa JG, Schroeter RB, Machado AR. Tool life and wear mechanism analysis of carbide tools used in the machining of martensitic and supermartensitic stainless steels. Tribol Int. 2017;105:102–17. doi: 10.1016/j.triboint.2016.09.035.
  • [12] Chen SH, Luo ZR. Study of using cutting chip color to the tool wear prediction. Int J Adv Manuf Technol. 2020;109:823–39. doi: 10.1007/s00170-020-05354-2.
  • [13] Timata M, Saikaew C. Experimental and simulation study on tool life models in drilling of forging brass using uncoated-WC and AlCrN coated-WC tools. Coatings. 2019;9(853). doi: 10.3390/coatings9120853.
  • [14] Kovac P, Gostimiroviv M, Rodic D, Savkovic B. Using the temperature method for the prediction of tool life in sustainable production. Meas: J Int Meas Confed. 2019;133:320–7. doi: 10.1016/j.measurement.2018.09.074.
  • [15] Kundrák J, Pálmai Z. Application of general tool-life function under changing cutting conditions. Acta Polytech. Hung. 11(2):61–76. doi: 10.10700/aph.11.02.2014.02.4.
  • [16] Srisattayakul P, Saikaew C, Wisisoraat A. Effects of hard chrome and MoN-coated stainless steel on wear behavior and tool life model under two-body abrasion wear testing. Metalurgija. 2017;56(3,4):371–4.
  • [17] Vasanth XA, Paul PS, Lawrance G, Varadarajan AS. Vibration control techniques during turning process: a review. Aust J Mech Eng. 2017;19:221–41. doi: 0.1080/144848846.2019.1585224.
  • [18] Aouici H, Elbah M, Yallese MA, Fnides B, Meddour I, Benlahmidi S. Performance comparison of wiper and conventional ceramic inserts in hard turning of AISI 4140 steel: analysis of machining forces and flank wear. Int J Adv Manufa Technol. 2016;87(5–8):2221–44. doi: 10.1007/s00170-016-8567-7.
  • [19] Saikaew C, Paengchit P, Wisitsoraat A. Machining performances of TiN+AlCrN coated WC and Al2O3+TiC inserts for turning of AISI 4140 steel under dry condition. J Manuf Proc. 2020;50:412–20. doi: 10.1016/j.jmapro.2019.12.057.
  • [20] Taylor FW. On the art of cutting metals. Trans ASME. 1907;28:31–279.
  • [21] Shaw MC, Cookson JO. Metal cutting principles. Oxford, UK: Oxford University Press; 2005.
  • [22] Evans JR, Olson DL. Introduction to simulation and risk analysis. Upper Saddle River, NJ, USA: Prentice Hall; 2002.
  • [23] Law AM, Kelton WD. Simulation modeling and analysis. Second Ed. New York: McGraw-Hill, Inc.; 1991.
  • [24] Marci ME, Moultif R, Lahlou S, Rochd S, Dezairi A. Monte Carlo simulations of MgO and Mg(OH)2 thin films sputtering yields by noble gas ion bombardment in plasma display panel PDP. Nucl Inst Methods Phys Res B. 2018;430:72–8. doi: 10.1016/j.nimb.2018.05.046.
  • [25] Klinkov SV, Kosarev VF. Monte Carlo simulation of the cold spray process of mixtures of metal and ceramic powders. J Therm Spray Technol. 2021;30:1081– 92. doi: 10.1007/s11666-021-01176-0.
  • [26] Kahraman MF, Öztürk S. Uncertainty analysis of cutting parameters during grinding based on RSM optimization and Monte Carlo simulation. Mater Test. 2019;61(12):1215–9. doi: 10.3139/120.111443.
  • [27] Kahraman MF, Öztürk S. Experimental study of newly structural design grinding wheel considering response surface optimization and Monte Carlo simulation. Meas: J Int Meas Confed. 2019;147: No. 106825, doi: 10.1016/j.measurement.2019.07.053.
  • [28] Öztürk S, Kahraman MF. Modeling and optimization of machining parameters during grinding of flat glass using response surface methodology and probabilistic uncertainty analysis based on Monte Carlo simulation. Meas: J Int Meas Confed. 2019;145:274–91. doi: 10.1016/j.measurement.2019.05.098.
  • [29] Kostić D, Milošević D, Stefanović S, Jovanov G, Cvejić R. Improving the operational; reliability model of the “Nikola Tesla-Block A” Therma; power plant system by applying an integrated maintenance model. Trans FAMENA. 2019;38(1):79–94. doi: 10.21278/TOF.43106.
  • [30] Kahraman MF, Bilge H, Öztürk S. Uncertainty analysis of milling parameters using Monte Carlo simulation, the Taguchi optimization method and data-driven modeling. Mater Test. 2019;61(5):477–83. doi: 10.3139/120.111344.
  • [31] Sarnobat SS, Raval HK. Experimental investigation and analysis of the influence of tool edge geometry and work piece hardness on surface residual stresses, surface roughness and work-hardening in hard turning of AISI D2 steel. Meas: J Int Meas Confed. 2019;131:235–60. doi: 10.1016/j.measurement.2018.08.048.
  • [32] Thomas AJ, Chad J, John E, Davis A, Francis M. Defining a bearing replacement strategy using Monte Carlo methods. Int J Qual Reliab Manag. 2010;28(2):155–68, doi: 10.1108/02656711111101737.
  • [33] Masuda M, Sato T, Kori T, Chujo Y. Cutting performance and wear mechanism of alumina-based tools when machining austempered ductile iron. Wear. 1994;174:147–53, doi: 10.1016/0043-1648(94)90096-5.
  • [34] Fernandez-Valdivielso A, López de Lacalle LN, Fernandez-Lucio P, Gonzalez H. Turning of austempered ductile iron with ceramic tools. Proc Inst Mechan Engi, Part B: J Eng Manuf. 2021;235:484–93, doi: 10.1177/0954405420957154.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-36bcfa29-99e6-4792-8c5d-87aa5790f6bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.