Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 17, no. 2 | 296--317
Tytuł artykułu

A Simple Approach for Predicting the Density of High Nitrogen Organic Compounds as Materials for Providing Clean Products and Enormous Energy Release

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High nitrogen organic compounds (N>50 wt.%) are important for chemical industries because they can provide clean products with generally low-molecular weight product gases and enormous energy release. The density of these materials at or near room temperature is an important physical property for the assessment of their detonation and combustion performances. A novel method is introduced here for the prediction of the density of various classes of organic compounds, including different derivatives of triazole, tetrazole, triazine, tetrazine, furazan, and some organic nitrogen-containing chains. The core model is based on elemental composition, where its reliability has been improved by considering some molecular fragments including specific functional groups. The high reliability of these simple model has been compared with the output from two complex quantum mechanical approaches. For 91 high nitrogen compounds, the values of the standard deviation (SD) of the core and improved correlations were 0.076 and 0.047 g·cm–3. For a further 32 materials, the values of SD were 0.057 and 0.042 g·cm–3 for the core and improved correlations, respectively. These data are close to core and improved quantum mechanical methods, i.e. 0.056 and 0.042 g·cm–3, respectively, where the calculated data from complex quantum mechanical approaches were available.
Wydawca

Rocznik
Strony
296--317
Opis fizyczny
Bibliogr. 89 poz., rys., tab.
Twórcy
  • Malek-ashtar University of Technology, Iran
  • Malek-ashtar University of Technology, Iran
Bibliografia
  • [1] Talawar, M.B.; Sivabalan, R.; Asthana, S.N.; Singh, H. Novel Ultrahigh-energy Materials. Combust., Explos., Shock Waves 2005, 41(3): 264-277.
  • [2] Eremets, M.I.; Trojan, I.A.; Gavriliuk, A.G.; Medvedev, S.A. Synthesis of High-Nitrogen Energetic Material. In: Static Compression of Energetic Materials. (Peiris, S.M.; Piermarini, G.J.; Eds.), Springer, 2008, pp. 75-97.
  • [3] Klapötke, T.M. Energetic Materials Encyclopedia. Walter de Gruyter GmbH & Co KG, 2018.
  • [4] Keshavarz, M.H. Combustible Organic Materials: Determination and Prediction of Combustion Properties. Walter de Gruyter GmbH & Co KG, 2018.
  • [5] Shreeve, J.M.; Wei, H.; Zhang, J. Synthesis, Characterization, and Energetic Properties of 6-Amino-tetrazolo[1,5-b]-1,2,4,5-tetrazine-7-N-oxide: a Nitrogen-Rich Material with High Density. Chem. Asian J. 2015, 10(5): 1130-1132.
  • [6] Lee, K.-Y.; Gilardi, R.; Hiskey, M.A.; Stine, J.R. ANTA and Its Oxidation Products. In: Decomposition, Combustion, and Detonation Chemistry of Energetic Materials (Brill, T.B.; Russell, T.P.; Tao, W.C.; Wardle, R.B., Eds.), Symp. Proc., vol. 418, Materials Research Society (MRS), Boston, Massachusetts, USA, 1995.
  • [7] Hiskey, M.A.; Goldman, N.; Stine, J.R. High-nitrogen Energetic Materials Derived from Azotetrazolate. J. Energ. Mater. 1998, 16(2-3): 119-127.
  • [8] Hiskey, M.A.; Chavez, D.E.; Naud, D. Preparation of 3,3’-Azobis(6-amino-1,2,4,5-tetrazine). US Patent 6342589, 2002.
  • [9] Chavez, D.E.; Hiskey, M.A. 1,2,4,5-Tetrazine Based Energetic Materials. J. Energ. Mater. 1999, 17(4): 357-377.
  • [10] Agrawal, J.P. High Energy Materials: Propellants, Explosives and Pyrotechnics. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010.
  • [11] Keshavarz, M.H.; Klapötke, T.M. Energetic Compounds: Methods for Prediction of Their Performance. Walter de Gruyter GmbH & Co KG, 2017.
  • [12] Klapötke, T.M. Chemistry of High-Energy Materials. Walter de Gruyter GmbH & Co KG, 2017.
  • [13] Keshavarz, M.H.; Klapötke, T.M. The Properties of Energetic Materials: Sensitivity, Physical and Thermodynamic Properties. Walter de Gruyter GmbH & Co KG, 2017.
  • [14] Keshavarz, M.H. Liquid Fuels as Jet Fuels and Propellants. Nova Science Publishers, New York, 2018.
  • [15] Klapötke, T.M. The Synthesis Chemistry of Energetic Materials. In: Energetics Science and Technology in Central Europe. (Armstrong, R.W., Ed.) CALCE EPSC Press, Maryland, 2012, pp. 57-71.
  • [16] Atkins, R.L. Advanced Energetic Materials. Washington DC, USA, 2004, p. 51.
  • [17] Damse, R.; Ghosh, M.; Naik, N.; Sikder, A. Thermoanalytical Screening of Nitrogen-rich Compounds for Ballistic Requirements of Gun Propellant. J. Propul. Power 2009, 25(1): 249-256.
  • [18] Nair, U.R.; Asthana, S.N.; Rao, A.S.; Gandhe, B.R. Advances in High Energy Materials (Review Paper). Def. Sci. J. 2010, 60(2): 137-151.
  • [19] Gao, H.; Shreeve, J.M. Azole-based Energetic Salts. Chem. Rev. 2011, 111(11):7377-7436.
  • [20] Rice, B.M., Hare, J.J.; Byrd E.F. Accurate Predictions of Crystal Densities using Quantum Mechanical Molecular Volumes. J. Phys. Chem., A 2007, 111(42): 10874-10879.
  • [21] Qiu, L.; Xiao, H.; Gong, X.; Ju, X.; Zhu, W. Crystal Density Predictions for Nitramines Based on Quantum Chemistry. J. Energ. Mater. 2007, 141(1): 280-288.
  • [22] Rice, B.M.; Byrd, E.F. Evaluation of Electrostatic Descriptors for Predicting Crystalline Density. J. Comput. Chem. 2013, 34(25): 2146-2151.
  • [23] Wang, G.; Gong, X.; Liu, Y.; Du, H.; Xiao, H. Prediction of Crystalline Densities of Polynitro Arenes for Estimation of Their Detonation Performance Based on Quantum Chemistry. J. Mol. Struct.: THEOCHEM 2010, 953(1-3): 163-169.
  • [24] Wang, G.; Xu, Y.; Xue, C.; Ding, Z.; Liu, Y.; Liu, H.; Gong, X. Prediction of the Crystalline Densities of Aliphatic Nitrates by Quantum Chemistry Methods. Cent. Eur. J. Energ. Mater. 2019, 16(3): 412-432.
  • [25] Nirwan, A.; Devi, A.; Ghule, V.D. Assessment of Density Prediction Methods Based on Molecular Surface Electrostatic Potential. J. Mol. Model. 2018, 24(7):166.
  • [26] Rahimi, R.; Keshavarz, M.H.; Akbarzadeh, A.R. Prediction of the Density of Energetic Materials on the Basis of their Molecular Structures. Cent. Eur. J. Energ. Mater. 2016, 13(1): 73-101.
  • [27] Fathollahi, M.; Sajady, H. Prediction of Density of Energetic Cocrystals Based on QSPR Modeling using Artificial Neural Network. Struct. Chem. 2018, 29(4):1119-1128.
  • [28] Zohari, N.; Bajestani, I.R. A Novel Correlation for Predicting the Density of Tetrazole – N-oxide Salts as Green Energetic Materials through Their Molecular Structure. Cent. Eur. J. Energ. Mater. 2018, 15(4): 629-651.
  • [29] Nazari, B.; Keshavarz, M.H.; Hamadanian, M.; Mosavi, S.; Ghaedsharafi, A.R.; Pouretedal, H.R. Reliable Prediction of the Condensed (Solid or Liquid) Phase Enthalpy of Formation of Organic Energetic Materials at 298 K through Their Molecular Structures. Fluid Phase Equilib. 2016, 408: 248-258.
  • [30] Zohari, N.; Abrishami, F.; Zeynali, V. Using the QSPR Approach for Estimating the Density of Azole‐based Energetic Compounds. Z. Anorg. Allg. Chem. 2017, 643(24): 2124-2137.
  • [31] Zohari, N.; Sheibani, N. Link between Density and Molecular Structures of Energetic Azido Compounds as Green Plasticizers. Z. Anorg. Allg. Chem. 2016, 642(24): 1472-1479.
  • [32] Keshavarz, M.H.; Pouretedal, H.R. A Reliable Simple Method to Estimate Density of Nitroaliphatics, Nitrate Esters and Nitramines. J. Hazard. Mater. 2009, 169(1-3):158-169.
  • [33] Keshavarz, M.H. Novel Method for Predicting Densities of Polynitro Arene and Polynitro Heteroarene Explosives in order to Evaluate Their Detonation Performance. J. Hazard. Mater. 2009, 165(1-3): 579-588.
  • [34] Keshavarz, M.H. New Method for Calculating Densities of Nitroaromatic Explosive Compounds. J. Hazard. Mater. 2007, 145(1-2): 263-269.
  • [35] Keshavarz, M.H.; Motamedoshariati, H.; Moghayadnia, R.; Ghanbarzadeh, M.; Azarniamehraban, J. A New Computer Code for Assessment of Energetic Materials with Crystal Density, Condensed Phase Enthalpy of Formation, and Activation Energy of Thermolysis. Propellants, Explos., Pyrotech. 2013, 38(1): 95-102.
  • [36] Keshavarz, M.H.; Pouretedal, H.R.; Saberi, E. A Simple Method for Prediction of Density of Ionic Liquids through Their Molecular Structure. J. Mol. Liq. 2016, 216: 732-737.
  • [37] Keshavarz, M.H. Prediction of Densities of Acyclic and Cyclic Nitramines, Nitrate Esters and Nitroaliphatic Compounds for Evaluation of their Detonation Performance. J. Hazard. Mater. 2007, 143(1-2): 437-442.
  • [38] Keshavarz, M.H.; Klapötke, T.M.; Sućeska, M. Energetic Materials Designing Bench (EMDB), Version 1.0. Propellants, Explos., Pyrotech. 2017, 42(8): 854-856.
  • [39] Keshavarz, M.H.; Rahimi, R.; Akbarzadeh, A.R. Two Novel Correlations for Assessment of Crystal Density of Hazardous Ionic Molecular Energetic Materials using Their Molecular Structures. Fluid Phase Equilib. 2015, 402: 1-8.
  • [40] Qu, Y.; Zeng, Q.; Wang, J.; Ma, Q.; Li, H.; Li, H.; Yang, G. Furazans with Azo Linkages: Stable CHNO Energetic Materials with High Densities, Highly Energetic Performance, and Low Impact and Friction Sensitivities. Chem. – Eur. J. 2016, 22(35): 12527-12532.
  • [41] Joo, Y.-H.: Shreeve, J.M. 1-Substituted 5-Aminotetrazoles: Syntheses from CNN3 with Primary Amines. Org. Lett. 2008, 10(20): 4665-4667.
  • [42] Joo, Y.H.; Shreeve, J.M. Energetic Mono‐, Di‐, and Trisubstituted Nitroiminotetrazoles. Angew. Chem., Int. Ed. 2009, 48(3): 564-567.
  • [43] Tang, Y.; Shreeve, J.M. Nitroxy/Azido‐Functionalized Triazoles as Potential Energetic Plasticizers. Chem. – Eur. J. 2015, 21(19): 7285-7291.
  • [44] Abe, T.; Joo, Y.H.; Tao, G.H.; Twamley, B.; Shreeve, J.M. Disubstituted Azidotetrazoles as Energetic Compounds. Chem. – Eur. J. 2009, 15(16): 4102-4110.
  • [45] Chen, D.; Yang, H.; Yi, Z.; Xiong, H.; Zhang, L.; Zhu, S.; Cheng, G. C8N26H4:an Environmentally Friendly Primary Explosive with High Heat of Formation. Angew. Chem. 2018, 130(8): 2103-2106.
  • [46] Xu, Z.; Cheng, G.; Yang, H.; Ju, X.; Yin, P.; Zhang, J.; Shreeve, J.M. A Facile and Versatile Synthesis of Energetic Furazan‐Functionalized 5‐Nitroimino‐1,2,4‐Triazoles. Angew. Chem., Int. Ed. 2017, 56(21): 5877-5881.
  • [47] Allen, F.H. The Cambridge Structural Database: a Quarter of a Million Crystal Structures and Rising. Acta Crystallogr., Sect. B: Struct. Sci. 2002, 58(3): 380-388.
  • [48] Wang, Q.; Pang, F.; Wang, G.; Huang, J.; Nie, F.; Chen, F.-X. Pentazadiene:a High-nitrogen Linkage in Energetic Materials. Chem. Commun. 2017, 53(15):2327-2330.
  • [49] Kumar, D.; He, C.; Mitchell, L.A.; Parrish, D.A.; Shreeve, J.M. Connecting Energetic Nitropyrazole and Aminotetrazole Moieties with N,N′-Ethylene Bridges:A Promising Approach for Fine Tuning Energetic Properties. J.Mater. Chem. A 2016, 4(23): 9220-9228.
  • [50] Kumar, D.; Mitchell, L.A.; Parrish, D.A.; Shreeve, J.M. Asymmetric N,N′-Ethylenebridged Azole-based Compounds: Two Way Control of the Energetic Properties of Compounds. J. Mater. Chem. A 2016, 4(25): 9931-9940.
  • [51] Thottempudi, V.; Forohor, F.; Parrish, D.A.; Shreeve, J.M. Tris(triazolo)benzene and Its Derivatives: High‐Density Energetic Materials. Angew. Chem., Int. Ed. 2012, 51(39): 9881-9885.
  • [52] Yin, P.; Parrish, D.A.; Shreeve, J.M. N‐Diazo‐Bridged Nitroazoles: Catenated Nitrogen‐Atom Chains Compatible with Nitro Functionalities. Chem. – Eur. J. 2014, 20(22): 6707-6712.
  • [53] Zhang, J.; Yin, P.; Mitchell, L.A.; Parrish, D.A.; Shreeve, J.M. N-functionalized Nitroxy/Azido Fused-ring Azoles as High-performance Energetic Materials. J. Mater. Chem. A 2016, 4(19): 7430-7436.
  • [54] Joo, Y.-H.; Shreeve, J.M. 1,3-Diazido-2-(azidomethyl)-2-propylammonium Salts. Inorg. Chem. 2009, 48(17): 8431-8438.
  • [55] Klapötke, T.M.; Schmid, P.C.; Schnell, S.; Stierstorfer, J. Thermal Stabilization of Energetic Materials by the Aromatic Nitrogen-rich 4,4′,5,5′-Tetraamino-3,3′-bi-1,2,4-triazolium Cation. J. Mater. Chem. A 2015, 3(6): 2658-2668.
  • [56] Joo, Y.H.; Shreeve, J.M. High‐density Energetic Mono‐ or Bis(oxy)‐5‐nitroiminotetrazoles. Angew. Chem., Int. Ed. 2010, 49(40): 7320-7323.
  • [57] Klapötke, T.M.; Leroux, M.; Schmid, P.C.; Stierstorfer, J. Energetic Materials Based on 5,5′‐Diamino‐4,4′‐dinitramino‐3,3′‐bi‐1,2,4‐triazole. Chem. – Asian J. 2016, 11(6): 844-851.
  • [58] Joo, Y.H.; Twamley, B.; Shreeve, J.M. Carbonyl and Oxalyl Bridged Bis(1,5‐Diaminotetrazole)‐based Energetic Salts. Chem. – Eur. J. 2009, 15(36): 9097-9104.
  • [59] Liu, W.; Li, S.-h.; Li, Y.-c.; Yang, Y.-z.; Yu, Y.; Pang, S.-p. Nitrogen-rich Salts Based on Polyamino Substituted N,N′-azo-1,2,4-triazole: a New Family of Highperformance Energetic Materials. J. Mater. Chem. A 2014, 2(38): 15978-15986.
  • [60] Xu, Z.; Cheng, G.; Yang, H.; Zhang, J.; Shreeve, J.M. Synthesis and Characterization of 4‐(1,2,4‐Triazole‐5‐yl)furazan Derivatives as High‐Performance Insensitive Energetic Materials. Chem. – Eur. J. 2018, 24(41): 10488-10497.
  • [61] Tang, Y.; He, C.; Gao, H.; Shreeve, J.M. Energized Nitro-substituted Azoles through Ether Bridges. J. Mater. Chem. A 2015, 3(30): 15576-15582.
  • [62] He, C.; Shreeve, J.M. Energetic Materials with Promising Properties: Synthesis and Characterization of 4,4′‐bis(5‐Nitro‐1,2,3‐2H‐triazole) Derivatives. Angew. Chem., Int. Ed. 2015, 54(21): 6260-6264.
  • [63] Yin, P.; Shreeve, J.M. From N‐Nitro to N‐Nitroamino: Preparation of High‐Performance Energetic Materials by Introducing Nitrogen‐Containing Ions. Angew. Chem., Int. Ed. 2015, 54(48): 14513-14517.
  • [64] Dippold, A.A.; Klapötke, T.M.; Oswald, M. Asymmetrically Substituted 5,5′-Bistriazoles–Nitrogen-rich Materials with Various Energetic Functionalities. Dalton Trans. 2013, 42(31): 11136-11145.
  • [65] Fendt, T.; Fischer, N.; Klapötke, T.M.; Stierstorfer, J. N-Rich Salts of 2-Methyl-5-nitraminotetrazole: Secondary Explosives with Low Sensitivities. Inorg. Chem. 2011, 50(4): 1447-1458.
  • [66] Tao, G.-H.; Twamley, B.; Shreeve, J.M. A Thermally Stable Nitrogen-rich Energetic Material – 3,4,5-Triamino-1-tetrazolyl-1,2,4-triazole (TATT). J. Mater. Chem. 2009, 19(32): 5850-5854.
  • [67] Klapötke, T.M.; Schmid, P.C.; Schnell, S.; Stierstorfer, J. 3,6,7‐Triamino‐[1,2,4] triazolo [4,3‐b][1,2,4]triazole: a Non‐toxic, High‐Performance Energetic Building Block with Excellent Stability. Chem. – Eur. J. 2015, 21(25): 9219-9228.
  • [68] Stierstorfer, J.; Tarantik, K.R.; Klapötke, T.M. New Energetic Materials: Functionalized 1‐Ethyl‐5‐aminotetrazoles and 1‐Ethyl‐5‐nitriminotetrazoles. Chem. – Eur. J. 2009, 15(23): 5775-5792.
  • [69] Chand, D.; Parrish, D.A.; Shreeve, J.M. Di(1H-tetrazol-5-yl)methanone Oxime and 5,5′-(Hydrazonomethylene)bis(1H-tetrazole) and Their Salts: a Family of Highly Useful New Tetrazoles and Energetic Materials. J. Mater. Chem. A 2013, 1(48):15383-15389.
  • [70] Dachs, M.; Dippold, A.A.; Gaar, J.; Holler, M.; Klapötke, T.M. A Comparative Study on Insensitive Energetic Derivatives of 5‐(1,2,4‐Triazol‐C‐yl)‐tetrazoles and Their 1‐Hydroxy‐tetrazole Analogues. Z. Anorg. Allg. Chem. 2013, 639(12‐13):2171-2180.
  • [71] Bian, C.; Zhang, M.; Li, C.; Zhou, Z. 3-Nitro-1-(2H-tetrazol-5-yl)-1H-1,2,4-triazol-5-amine (HANTT) and Its Energetic Salts: Highly Thermally Stable Energetic Materials with Low Sensitivity. J. Mater. Chem. A 2015, 3(1): 163-169.
  • [72] Yin, P.; Zhang, Q.; Zhang, J.; Parrish, D.A.; Shreeve, J.M. N-Trinitroethylamino Functionalization of Nitroimidazoles: a New Strategy for High Performance Energetic Materials. J. Mater. Chem. A 2013, 1(25): 7500-7510.
  • [73] Yin, P.; Zhang, J.; He, C.; Parrish, D.A.; Shreeve, J.M. Polynitro-substituted Pyrazoles and Triazoles as Potential Energetic Materials and Oxidizers. J. Mater. Chem. A 2014, 2(9): 3200-3208.
  • [74] Klapötke, T.M.; Sabaté, C.M.; Rasp, M. Synthesis and Properties of 5-Nitrotetrazole Derivatives as New Energetic Materials. J. Mater. Chem. 2009, 19(15): 2240-2252.
  • [75] Klapötke, T.M.; Sabaté, C.M. Bistetrazoles: Nitrogen-rich, High-performing, Insensitive Energetic Compounds. Chem. Mater. 2008, 20(11): 3629-3637.
  • [76] He, C.; Yin, P.; Mitchell, L.A.; Parrish, D.A.; Shreeve, J.M. Energetic Aminatedazole Assemblies from Intramolecular and Intermolecular N–H…O and N–H…N Hydrogen Bonds. Chem Commun. 2016, 52(52): 8123-8126.
  • [77] Klapötke, T.M.; Mayer, P.; Stierstorfer, J.; Weigand, J.J. Bistetrazolylamines – Synthesis and Characterization. J. Mater. Chem. 2008, 18(43): 5248-5258.
  • [78] Huang, Y.; Gao, H.; Twamley, B.; Shreeve, J.M. Nitroamino Triazoles: Nitrogen‐Rich Precursors of Stable Energetic Salts. Eur. J. Inorg. Chem. 2008, 2008(16):
  • [79] Wang, B.; Qi, X.; Zhang, W.; Wang, K.; Li, W.; Zhang, Q. Synthesis of 1-(2H-Tetrazol-5-yl)-5-nitraminotetrazole and Its Derivatives from 5-Aminotetrazole and Cyanogen Azide: a Promising Strategy towards the Development of C–N Linked Bistetrazolate Energetic Materials. J. Mater. Chem. A 2017, 5(39): 20867-20873.
  • [80] Fischer, D.; Klapötke, T.M.; Stierstorfer, J. 1,5‐Di(nitramino) Tetrazole: High Sensitivity and Superior Explosive Performance. Angew. Chem., Int. Ed. 2015, 54(35): 10299-10302.
  • [81] Stierstorfer, J.; Klapötke, T.M.; Hammerl, A.; Chapman, R.D. 5‐Azido‐1Htetrazole–Improved Synthesis, Crystal Structure and Sensitivity Data. Z. Anorg. Allg. Chem. 2008, 634(6‐7): 1051-1057.
  • [82] Göbel, M.; Karaghiosoff, K.; Klapötke, T.M.; Piercey, D.G.; Stierstorfer J. Nitrotetrazolate-2N-oxides and the Strategy of N-Oxide Introduction. J. Am. Chem. Soc. 2010, 132(48): 17216-17226.
  • [83] Palm, W.J. Introduction to MATLAB for Engineers. 3rd Ed. McGraw-Hill, New York, 2011.
  • [84] Keshavarz, M.H.; Gharagheizi, F.; Shokrolahi, A.; Zakinejad, S. Accurate Prediction of the Toxicity of Benzoic Acid Compounds in Mice via Oral without using any Computer Codes. J. Hazard. Mater. 2012, 237: 79-101.
  • [85] Billo, E.J. Excel for Chemists: a Comprehensive Guide. 2nd Ed., Wiley, New York, 2001.
  • [86] Becke, A.D. Density‐functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98(7): 5648-5652.
  • [87] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.;Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.;Montgomery, J.A., Jr.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.;Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.;Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.;Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.;Adamo, C.;Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.;Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.;Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.;Daniels, A.D.; Farkas, O.;Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian 09, Revision A.1.Gaussian, Inc., Wallingford, CT, 2009.
  • [88] Politzer, P.; Martinez, J.; Murray, J.S.; Concha, M.C.; Toro-Labbe, A. An Electrostatic Interaction Correction for Improved Crystal Density Prediction. Mol. Phys. 2009, 107(19): 2095-2101.
  • [89] Willmott, C.J.; Matsuura, K.; Robeson, S.M. Ambiguities Inherent in Sums-ofsquares-based Error Statistics. Atmos. Environ. 2009, 43(3): 749-752.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-36b8ab92-cec1-4afe-9e53-aafe3f184c71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.