Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 90, nr 1 | 5--15
Tytuł artykułu

Optimization and analysis of porosity and roughness in selective laser melting 316L parts

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The investigations have been carried out on 316L stainless steel parts fabricated by Selective Laser Melting (SLM) technique. The study aimed to determine the effect of SLM parameters on porosity, hardness, and structure of 316L stainless steel. Design/methodology/approach: The analyses were conducted on 316L stainless steel parts by using AM125 SLM machine by Renishaw. The effects of the different manufacturing process parameters as power output, laser distance between the point’s melted metal powder during additive manufacturing as well as the orientation of the model relative to the laser beam and substrate on porosity, hardness, microstructure and roughness were analysed and optimised. Findings: The surface quality parts using 316L steel with the assumed parameters of the experiment depends on the process parameters used during the SLM technique as well as the orientation of formed walls of the model relative to the substrate and thus the laser beam. The lowest roughness of 316L SLM parts oriented perpendicularly to the substrate was found when 100 W and 20 μm the distance point was utilised. The lowest roughness for part oriented at 60° relatives to the substrate was observed when 125 W and the point distance 50 μm was employed. Practical implications: Stainless steel is one of the most popular materials used for selective laser sintering (SLM) processing to produce nearly fully dense components from 3D CAD models. Reduction of porosity is one of the critical research issues within the additive manufacturing technique SLM, since one of the major cost factors is the post-processing. Originality/value: This manuscript can serve as an aid in understanding the importance of technological parameters on quality and porosity of manufactured AM parts made by SLM technique.
Wydawca

Rocznik
Strony
5--15
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
  • Division of Materials Processing Technology, Management, and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, mariusz.krol@polsl.pl
  • Division of Materials Processing Technology, Management, and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Division of Materials Processing Technology, Management, and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] D.T. Pham, R.S. Gault, A comparison of rapid prototyping technologies, International Journal of Machine Tools and Manufacture 38/10 (1998) 1257¬1287, doi: 10.1016/S0890-6955(97)00137-5.
  • [2] J.P. Kruth, Material increases manufacturing by rapid prototyping technologies, Manufacturing Technology 40/2 (1991) 603-614, doi: 10.1016/S0007-8506(07) 61136-6.
  • [3] X. Yan, P. Gu, A review of rapid prototyping technologies and systems, Computer Aided Design 28/4 (1996) 307-318, doi: 10.1016/0010-4485(95)00035-6.
  • [4] K.V. Venkatesh, V.V. Nandini, Direct Metal Laser Sintering: A Digitised Metal Casting Technology, The Journal of Indian Prosthodontic Society 13 (2013) 389-392, doi: 10.1007/sl3191-013-0256-8.
  • [5] M. Simonelli, Y.Y. Tse, C. Tuck, Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6A1-4V, Materials Science & Engineering A 616 (2014) 1-11, doi: 10.1016/j.msea. 2014.07.086.
  • [6] D. Dai, D. Gu, Influence of thermodynamics within molten pool on migration and distribution state of reinforcement during selective laser melting of AlN/AlSilOMg composites, International Journal of Machine Tools & Manufacture 100 (2016) 14-24, doi: 10.1016/j .ijmachtools.2015.10.004.
  • [7] Ch. Haase, J. Bultmann, J. Hof, S. Ziegler, S. Bremen, Ch. Hinke, A. Schwedt, U. Prahl, W. Bleck, Exploiting Process-Related Advantages of Selective Laser Melting for the Production of High-Manganese Steel, Materials 10/56 (2017) 1-14, doi: 10.3390/mal0010056.
  • [8] D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals, Acta Materialia 117 (2016) 371-392, doi: 10.1016/j.actamat.2016.07.019.
  • [9] L.N. Carter, Ch. Martin, P.J. Withers, M.M. Attallah, The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy, Journal of Alloys and Compounds 615 (2014) 338-347, doi: 10.1179/1743284715Y.0000000108.
  • [10] T.M. Mower, M.J. Long, Mechanical behavior of additive manufactured, powder-bed laser-fused materials, Materials Science & Engineering A 651 (2016) 198-213, doi: 10.1016/j.msea.2015.10.068.
  • [11] M. Baumers, P. Dickens, Ch. Tuck, R. Hague, The cost of additive manufacturing: machine productivity, economies of scale and technology-push, Technological Forecasting & Social Change 102 (2016) 193-201, doi: 10.1016/j.techfore 2015.02.015.
  • [12] A. Zieliński, G. Golański, M. Sroka, P. Skupień, Microstructure and mechanical properties of the T23 steel after long-term ageing at elevated temperature, Materials at High Temperatures 33/2 (2016) 154-163, doi: 10.1080/09603409.2016.1139306.
  • [13] M. Król, T. Mikuszewski, D. Kuc, T. Tański, E. Hadasik, Thermal Assessment Of Modified Ultra¬Light Magnesium-Lithium Alloys, Archives of Metallurgy and Materials 62/4 (2017) 2433-2440, doi: 10.1515/amm-2017-0358.
  • [14] M.K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R.I. Campbell, I. Gibson, A. Bernard, J. Schulz, P. Graf, B. Ahuja, F. Martina, Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints, CIRP Annals - Manufacturing Technology 65/2 (2016) 737-760, doi: https://doi.org/10.1016/j.cirp.2016.05.004.
  • [15] P. Hanzl, M. Zetek, T. Baksa, T. Kroupa, The Influence of Processing Parameters on the Mechanical Properties of SLM Parts, Procedia Engineering 100 (2015) 1405-1413, doi: 10.1016/ j.proeng.2015.01.510.
  • [16] M. Sroka, A. Zieliński, M. Dziuba-Kałuża, M. Kremzer, M. Macek, A. Jasiński, Assessment of the residual life of steam pipeline material beyond the computational working time, Metals 7/3 (2017) 82, doi:10.3390/met7030082.
  • [17] M. Król, Effect of Grain Refinements on the Microstructure and Thermal Behaviour of Mg-Li-Al Alloy, Journal of Thermal Analysis and Calorimetry, in print, doi: 10.1007/sl0973-018-7223-x.
  • [18] A. Zieliński, G. Golański, M. Sroka, Comparing the methods in determining residual life on the basis of creep tests of low-alloy Cr-Mo-V cast steels operated beyond the design service life, International Journal of Pressure Vessels and Piping 152 (2017) 1-6, doi: 10.1016/j.ijpvp.2017.03.002.
  • [19] M. Król, T. Tański, Surface Quality Research for Selective Laser Melting of Ti-6A1-4V Alloy, Archives of Metallurgy and Materials 61/3 (2016) 1291-1296, doi: 10.1515/amm-2016-0213.
  • [20] Z. Brytan, Comparison of Vacuum Sintered and Selective Laser Melted Steel AISI 316L, Archives of Metallurgy and Materials 62/4 (2017) 2125-2131, doi: 10.1515/amm-2017-0314.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-368eaf1f-4c10-452b-9d9d-4cc133189b72
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.