Czasopismo
2024
|
Vol. 32, No. 4
|
art. no. e152766
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
Reducing noise in fibre-optic gyroscope (FOG)-based rotational seismometers is crucial in guaranteeing their applicability as future high-precision sensors. This paper presents a practical approach to noise analysis of a designed and manufactured FOG-based three-axis rotational seismometer. The performed measurements show that proper identification of noise sources and subsequent changes to the device’s configuration which addressed these noise issues, visibly improved the Allan deviation plot of the device. In particular, angle random walk was reduced from 100–200 to around 35 nrad/s/√Hz and bias instability – from several dozens down to single nrad/s. These improvements were achieved only by elimination or mitigation of the impact of all noise sources, without changing any optoelectronic components of the constructed device and without applying any additional post-processing methods.
Czasopismo
Rocznik
Tom
Strony
art. no. e152766
Opis fizyczny
Bibliogr. 43 poz., rys., fot., wykr., tab.
Twórcy
autor
- Department of Microelectronics and Computer Science, Lodz University of Technology, ul. Wolczanska 221, 93-005 Lodz, Poland, piotr.zajac@p.lodz.pl
autor
- Department of Microelectronics and Computer Science, Lodz University of Technology, ul. Wolczanska 221, 93-005 Lodz, Poland
autor
- Department of Microelectronics and Computer Science, Lodz University of Technology, ul. Wolczanska 221, 93-005 Lodz, Poland
autor
- Department of Microelectronics and Computer Science, Lodz University of Technology, ul. Wolczanska 221, 93-005 Lodz, Poland
autor
- Department of Microelectronics and Computer Science, Lodz University of Technology, ul. Wolczanska 221, 93-005 Lodz, Poland
autor
- Department of Microelectronics and Computer Science, Lodz University of Technology, ul. Wolczanska 221, 93-005 Lodz, Poland
autor
- Department of Microelectronics and Computer Science, Lodz University of Technology, ul. Wolczanska 221, 93-005 Lodz, Poland
autor
- Department of Microelectronics and Computer Science, Lodz University of Technology, ul. Wolczanska 221, 93-005 Lodz, Poland
autor
- Department of Microelectronics and Computer Science, Lodz University of Technology, ul. Wolczanska 221, 93-005 Lodz, Poland
autor
- Institute of Applied Physics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
- Elproma Elektronika Sp. z o.o., ul. Dunska 2A, 05-152 Czosnow, Poland
autor
- Institute of Applied Physics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
- Elproma Elektronika Sp. z o.o., ul. Dunska 2A, 05-152 Czosnow, Poland
Bibliografia
- [1] Lefèvre, H. C. The fiber-optic gyroscope: Challenges to become the ultimate rotation-sensing technology. Opt. Fiber Technol. 19, 828–832 (2013). https://doi.org/10.1016/j.yofte.2013.08.007.
- [2] Song, N., Xu, X., Zhang, Z., Gao, F. & Wang, X. Advanced interferometric fiber optic gyroscope for inertial sensing: A review. J. Light. Technol. 41, 4023–4034 (2023). https://doi.org/10.1109/JLT.2023.3260839.
- [3] Carr, K., Greer, R., May, M. B. & Gift, S. Navy testing of the iXBlue MARINS fiber optic gyroscope (FOG) inertial navigation system (INS). In 2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014, 1392–1408 (IEEE, 2014). https://doi.org/10.1109/PLANS.2014.6851515.
- [4] Grifi, D., Senatore, R., Quatraro, E., Verola, M. & Pizzarulli, A. FOG based INS for satellite launcher application. In 2017 DGON Inertial Sensors and Systems (ISS), 1–12 (IEEE, 2017). https://doi.org/10.1109/InertialSensors.2017.8171492.
- [5] Heckman, D. & Baretela, L. Improved affordability of high precision submarine inertial navigation by insertion of rapidly developing fiber optic gyro technology. In IEEE 2000. Position Location and Navigation Symposium, 404–410 (IEEE, 2000). https://doi.org/10.1109/PLANS.2000.838332.
- [6] Kurzych, A. et al. Fibre-optic Sagnac interferometer in a FOG minimum configuration as instrumental challenge for rotational seismology. J. Light. Technol. 36, 879–884 (2018). https://doi.org/10.1109/JLT.2017.2769136.
- [7] Murray-Bergquist, L., Bernauer, F. & Igel, H. Characterization of six-degree-of-freedom sensors for building health monitoring. Sensors 21, 3732 (2021). https://doi.org/10.3390/s21113732.
- [8] Sagnac, G. L’éther lumineux démontré par l’effet du vent relatif d’éther dans un interféromètre en rotation uniforme. Comptes rendus hebdomadaires des séances de l’Académie des sciences 157, 708–710 (1913). https://ether-wind.narod.ru/Sagnac_1913_10/Sagnac_1913_10_fr.pdf.
- [9] Post, E. J. Sagnac effect. Rev. Mod. Phys. 39, 475–493 (1967). https://doi.org/10.1103/RevModPhys.39.475.
- [10] Lloyd, S.W., Digonnet, M. J. F. & Fan, S. Modeling coherent backscattering errors in fiber optic gyroscopes for sources of arbitrary linewidth. J. Light. Technol. 31, 2070–2078 (2013). https://doi.org/10.1109/JLT.2013.2261283.
- [11] Lefèvre, H. The Fiber-optic Gyroscope. Artech House optoelectronics library (Artech House, 1993).
- [12] Pavlath, G. A. Fiber optic gyros: the vision realized. Proc. SPIE 6314, 63140G (2006). https://doi.org/10.1117/12.683457.
- [13] Vali, V. & Shorthill, R. W. Fiber ring interferometer. Appl. Opt. 15, 1099–1100 (1976). https://doi.org/10.1364/AO.15.001099.
- [14] Lee, W. H. K., Çelebi, M., Todorovska, M. I. & Igel, H. Introduction to the special issue on rotational seismology and engineering applications. Bull. Seismol. Soc. Am. 99, 945–957 (2009). https://doi.org/10.1785/0120080344.
- [15] iXblue. blueSeis-3A : Portable rotational 3-component seismometer absolute & broadband. https://www.ixblue.com/wp-content/uploads/2022/02/blueSeis-datasheet.pdf (2019) (Accessed: 16th June 2024).
- [16] Elproma Electronics. FOSREM : Fibre-optic system for rotational events&phenomena monitoring. https://fosrem.eu/?page_id=10 (2023) (Accessed: 16th June 2024).
- [17] Ulrich, R. Fiber-optic rotation sensing with low drift. Opt. Lett. 5, 173–175 (1980). https://doi.org/10.1364/OL.5.000173.
- [18] Jaroszewicz, L. et al. Review of the usefulness of various rotational seismometers with laboratory results of fibre-optic ones tested for engineering applications. Sensors 16, 1–22 (2016). https://doi.org/10.3390/s16122161.
- [19] Korkishko, Y. N. et al. Highest bias stability fiber-optic gyroscope SRS-5000. In 2017 DGON Inertial Sensors and Systems (ISS), 1–23 (IEEE, 2017). https://doi.org/10.1109/InertialSensors.2017.8171490.
- [20] Guattari, F., Chouvin, S., Moluçon, C. & Lefèvre, H. A simple optical technique to compensate for excess RIN in a fiber-optic gyroscope. In 2014 DGON Inertial Sensors and Systems (ISS), 1–14 (IEEE, 2014). https://doi.org/10.1109/InertialSensors.2014.7049411.
- [21] Hotate, K. Resonator fiber optic gyro using digital serrodyne modulation: method to reduce the noise induced by the backscattering and closed-loop operation using digital signal processing. Proc. SPIE 3746, 37463E (1999). https://doi.org/10.1117/12.2302112.
- [22] Zheng, Y., Xu, H., Song, J., Li, L. & Zhang, C. Excess relative-intensity-noise reduction in a fiber optic gyroscope using a Faraday rotator mirror. J. Light. Technol. 38, 6939–6947 (2020). https://doi.org/10.1109/JLT.2020.3020432.
- [23] Algrain, M. C. & Ehlers, D. E. Novel Kalman filtering method for the suppression of gyroscope noise effects in pointing and tracking systems. Proc. SPIE - Opt. Eng. 34, 3016–3030 (1995). https://doi.org/10.1117/12.210754.
- [24] Narasimhappa, M., Sabat, S. L. & Nayak, J. Fiber-optic gyroscope signal denoising using an adaptive robust Kalman filter. IEEE Sensors J. 16, 3711–3718 (2016). https://doi.org/10.1109/JSEN.2016.2535396.
- [25] Noureldin, A., Irvine-Halliday, D., Tabler, H. & Mintchev, M. P. New technique for reducing the angle random walk at the output of fiber optic gyroscopes during alignment processes of inertial navigation systems. Proc. SPIE - Opt. Eng. 40, 2097–2106 (2001). https://doi.org/10.1117/1.1404117.
- [26] Qian, H. & Ma, J. Research on fiber optic gyro signal denoising based on wavelet packet soft-threshold. J. Syst. Eng. Electron. 20, 607–612 (2009). https://ieeexplore.ieee.org/document/6074706.
- [27] Zhu, R., Zhang, Y. & Bao, Q. A novel intelligent strategy for improving measurement precision of FOG. IEEE Trans. Instrum. Meas. 49, 1183–1188 (2000). https://doi.org/10.1109/19.893253.
- [28] Allan, D. W. Statistics of atomic frequency standards. Proc. IEEE 54, 221–230 (1966). https://doi.org/10.1109/PROC. 1966.4634.
- [29] El-Sheimy, N., Hou, H. & Niu, X. Analysis and modeling of inertial sensors using Allan variance. IEEE Trans. Instrum. Meas. 57, 140–149 (2008). https://doi.org/10.1109/TIM.2007.908635.
- [30] Ng, L. C. On the application of Allan variance method for ring laser gyro performance characterization. Report, Lawrence Livermore National Laboratory (1993). https://www.osti.gov/biblio/10196087.
- [31] IEEE. IEEE Standard for Specifying and Testing Single-Axis Interferometric Fiber Optic Gyros (2021). IEEE Std 952-2020 (Revision of IEEE Std 952-1997).
- [32] Zheng, Y., Xu, H., Song, J., Li, L. & Zhang, C. Excess relative-intensity-noise reduction in a fiber optic gyroscope using a Faraday rotator mirror. J. Light. Technol. 38, 6939–6947 (2020). https://doi.org/10.1109/JLT.2020.3020432.
- [33] Yang, Y., Li, S., Yang, F. & Jin, W. Differential fiber optic gyroscope driven by two broadband sources of different wavelengths. IEEE Access 8, 65443–65449 (2020). https://doi.org/10.1109/ACCESS.2020.2984006.
- [34] Wheeler, J. M. & Digonnet, M. J. F. A low-drift laser-driven FOG suitable for trans-pacific inertial navigation. J. Light. Technol. 40, 7464–7470 (2022). https://doi.org/10.1109/JLT. 2022.3201189.
- [35] Wang, L., Zhang, C., Lin, T., Li, X. & Wang, T. Characterization of a fiber optic gyroscope in a measurement while drilling system with the dynamic Allan variance. Measurement 75, 263–272 (2015). https://doi.org/10.1016/j.measurement.2015.05.001.
- [36] Freescale Semiconductor. Allan Variance: Noise Analysis for Gyroscopes (2015). AN5087, https://www.nxp.com/docs/en/application-note/AN5087.pdf.
- [37] Jaroszewicz, L. R. et al. The fiber-optic rotational seismograph-laboratory tests and field application. Sensors 19 (2019). https://doi.org/10.3390/s19122699.
- [38] Gundavarapu, S. et al. Interferometric optical gyroscope based on an integrated Si3N4 low-loss waveguide coil. J. Light. Technol. 36, 1185–1191 (2018). https://doi.org/10.1109/JLT.2017.2765918.
- [39] Kurzych, A. T., Jaroszewicz, L. R. & Kowalski, J. K. Development of three-axis fibre-optic seismograph for direct and autonomous monitoring of rotational events with perspective of historical review. Sensors 22 (2022). https://doi.org/10.3390/s22228902.
- [40] Kamiński, M. et al. Firmware development for the fibre-optic seismometer based on FOG. Opto-Electron. Rev. 32, 150179 (2024). https://doi.org/10.24425/opelre.2024.150179.
- [41] Bernauer, F. et al. BlueSeis3A: Full characterization of a 3C broadband rotational seismometer. Seismol. Res. Lett. 89, 620–629 (2018). https://doi.org/10.1785/0220170143.
- [42] Bitline System. Mini broadband ASE light source.oeMarket.com. https://www.oemarket.com/catalog/product_info.php/mini-broadband-ase-light-source-p-50?osCsid=ca17da2751937df700d1726ef8757a5d (2024) (Accessed: 16th June 2024).
- [43] Lloyd, S. W., Fan, S. & Digonnet, M. J. F. Experimental observation of low noise and low drift in a laser-driven fiber optic gyroscope. J. Light. Technol. 31, 2079–2085 (2013). https://doi.org/10.1109/JLT.2013.2261285.
Uwagi
This work was supported by the Polish Agency for Enterprise
Development project FENG.01.01-IP.02-1714/23 and
the National Centre for Research and Development project
POIR.01.01.01-00-1553/20-00.
Development project FENG.01.01-IP.02-1714/23 and
the National Centre for Research and Development project
POIR.01.01.01-00-1553/20-00.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-366ab58f-5618-47d9-a9eb-d78fba00a8ef