Warianty tytułu
Języki publikacji
Abstrakty
Optoelectronic technology plays an important role in medical diagnosis. In the paper a review of some optoelectronic sensors for invasive and non-invasive human health test is presented. The main attention is paid on their basic operation principle and medical usefulness. The paper presents also own research related to developing of tools for human breath analysis. Breath sample unit and three gaseous biomarkers analyzer employing laser absorption spectroscopy designed for clinical diagnostics were described. The analyzer is equipped with sensors for CO, CH₄ and NO detection. The sensors operate using multi-pass spectroscopy with wavelength modulation method (MUPASS-WMS) and cavity enhanced spectroscopy (CEAS).
Czasopismo
Rocznik
Tom
Strony
122--133
Opis fizyczny
Bibliogr. 79 poz., rys., wykr.
Twórcy
autor
- Institute of Optoelectronics, Military University of Technology, gen. Witolda 2 Urbanowicza Str., Warsaw 00-908, Poland, zbigniew.bielecki@wat.edu.pl
autor
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura St., Warsaw 04-093, Poland
autor
- Institute of Optoelectronics, Military University of Technology, gen. Witolda 2 Urbanowicza Str., Warsaw 00-908, Poland
autor
- Institute of Optoelectronics, Military University of Technology, gen. Witolda 2 Urbanowicza Str., Warsaw 00-908, Poland
autor
- Institute of Optoelectronics, Military University of Technology, gen. Witolda 2 Urbanowicza Str., Warsaw 00-908, Poland
autor
- Institute of Optoelectronics, Military University of Technology, gen. Witolda 2 Urbanowicza Str., Warsaw 00-908, Poland
Bibliografia
- [1] M.A. Perez, O. Gonzalez, J.R. Arias, Optical Fiber Sensors for Chemical and Biological Measurements, InTech, 2013, http://dx.doi.org/10.5772/52741 (Chapter 10).
- [2] http://photobiology.info/Visser-Rolinski files/Fig4.png.
- [3] M. Mohamad, H. Manap, An overview of optical fibre sensors for medical applications, Int. J. Eng. Technol. Sci. 1 (2014) 9–11.
- [4] L.M. Lechuga, A. Calle, F. Prieto, Optical sensor based on evanescent field sensing. Part I: surface plasmon resonance sensors, Anal. Chem. 19 (Suppl) (2000) 54–60.
- [5] S. Silvestri, E. Schena, Optical-Fiber Measurement Systems for Medical Application, InTech, 2013, http://dx.doi.org/10.5772/18845 (Chapter 11).
- [6] A. Mendez, Medical Applications of Fiber-Optics: Optical Fibers Sees Growth as Medical Sensors, Laser Focus World, 2011, 01/01.
- [7] H.W. Dremel, General principles of endoscopic imaging, in: A. Ernst, F.J.F. Herth (Eds.), Principles and Practice of Interventional Pulmonology, vol. 15, Springer Science+Business Media, New York, 2013.
- [8] F. Baldini, Invasive sensors in medicine, in: NATO SCI SER II MATH, Springer, 2006, pp. 417–435.
- [9] http://www.cecchi.com/apparecchi-medicali/.
- [10] R. Falciai, A.M. Scheggi, F. Baldini, P. Bechi, Method of Detecting Enterogastric Reflux and Apparatus for the Implementation of This Method, European Patent number 0323816B1 6-11-91.
- [11] P. Bechi, R. Falciai, F. Baldini, F. Cosi, F. Pucciani, S. Boscherini, New fiber optic sensor for ambulatory entero-gastric reflux detection, Proceedings P SOC PHOTO-OPT INS vol. 1648 (1992), http://dx.doi.org/10.1117/12.58293.
- [12] O.S. Wolfbeis, Fiber Optic Chemical Sensors and Biosensors, CRC Press, Boca Raton, 1991.
- [13] I. Kasik, J. Mrazek, T. Martan, et al., Fiber-optic pH detection in small volumes of biosample, Anal. Bioanal. Chem. 398 (5) (2010) 1883–1889.
- [14] Y. Xiong, Y. Huang, Z. Ye, Y. Guan, Flow injection small volume fiber-optic pH sensor based on evanescent wave excitation and fluorescence determination, J. Fluoresc. 21 (3) (2011) 1137–1142.
- [15] D. Wencel, T. Abel, C. McDonagh, Optical chemical pH sensors, Anal. Chem. 86 (1) (2014) 15–29.
- [16] P. Baldini, S. Bechi, F. Bracci, In vivo optical-fibre sensor for gastro-oesophageal measurement, Sens. Actuators B 29 (1995) 164–168.
- [17] Technical Compedium CDI Blood Parameter Monitoring System 500, 2017.
- [18] http://www.terumo-cvgroup.com/ video/858768 CDI500-VIDEO DEC2015 FINAL.shtml.
- [19] J.A.C. Heijmans, L.K. Cheng, F.P. Wieringa, Optical fiber sensors for medical application – practical engineering considerations, IFMBE Proc. 22 (2008) 2330–2334.
- [20] P. Rolfe, F. Scopesi, G. Serra, Advances in fiber-optic sensing in medicine and biology, Meas. Sci. Technol. 18 (6) (2007) 1683–1688.
- [21] G. Konieczny, Z. Opilski, T. Pustelny, E. Maciak, State of the work diagram of the artificial heart, Acta Phys. Pol. 116 (September (3)) (2009).
- [22] G. Konieczny, Z. Opilski, T. Pustelny, A. Gacek, et al., Results of experiments with fiber pressure sensor applied in the polish artificial heart prosthesis, Acta Phys. Pol. A 118 (6) (2010) 1182–1184.
- [23] Y. Lochner, A. Khan, All-organic optoelectronic sensor for pulse oximetry, Nat. Commun. (2014) www.nature.com/naturecommunications.
- [24] I. Fredriksson, C. Fors, J. Johansson, Laser Doppler Flowmetry – A Theoretical Framework, Department of Biomedical Engineering, Linköping University, 2007 www.imt.liu.se/bit/ldf/ldfmain.html.
- [25] H. Jafarzadeh, Laser Doppler flowmetry in endodontics: a review, Int. Endod. J. 42 (2009) 476–490.
- [26] H.E. Albrecht, N. Damaschke, M. Borys, C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques, Springer, New York, 2003, pp. 4–30.
- [27] Y. Kimura, P. Wilder-Smith, K. Matsumoto, Lasers in endodontics: a review, Int. Endod. J. 33 (2000) 173–185.
- [28] J. Kottmann, U. Grob, J.M. Rey, M.W. Sigrist, Mid-Infrared fiber-coupled photoacoustic sensor for biomedical applications, Sensors 13 (2013) 535–549.
- [29] A. Ergin, G.A. Thomas, Non-invasive detection of glucose in porcine eyes, Bioengineering Conference, Proc. IEEE 31st Annual Northeast (2005).
- [30] http://www.microspectra.com/support/the-science/raman-science.
- [31] C. Camerlingo, I. Delfino, G. Perna, V. Capozzi, M. Lepore, Micro-Raman spectroscopy and univariate analysis for monitoring disease follow-up, Sensors 11 (2011) 8309–8322.
- [32] M. Gnyba, M.S. Wróbel, K. Karpienko, D. Milewska, M. Jędrzejewska-Szczerska, Combined analysis of whole human blood parameters by Raman spectroscopy and spectral-domain low-coherence interferometry, in: Proc. SPIE 9537, Clinical and Biomedical Spectroscopy and Imaging IV, 15 July, 2015, http://dx.doi.org/10.1117/12.2183645, 95371N.
- [33] J.M. Smulko, N.C. Dingari, J.S. Soares, I. Barman, Anatomy of noise in quantitative biological Raman spectroscopy, Bioanalysis 6 (2014) 411–421.
- [34] M. Wróbel, M. Gnyba, M. Jedrzejewska-Szczerska, T. Myllyla, J. Smulko, I. Barman, Sensing of anesthetic drugs in blood with Raman spectroscopy, in: Advanced Photonics 2015, Optical Society of America, 2015, OSA Technical Digest (online), paper SeS1B.4.
- [35] G.H. Wu, R.H. Datar, K.M. Hansen, T. Thundat, R.J. Cote, A. Majumdar, Bioassay of prostatespecific antigen (PSA) using microcantilever, Nat. Biotechnol. 19 (2001) 85660.
- [36] https://www.nae.edu/20683.aspx.
- [37] B. Povazay, K. Bizheva, A.H. Unterhuber, B. Hermann, H. Sattmann, A.F. Fercher, W. Drexler, A. Apolonski, et al., Submicrometer axial resolution optical coherence tomography, Opt. Lett. 27 (2002) 1800.
- [38] A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, M. Wojtkowski, Retinal blood flow analysis using spectral OCT: joint spectral and time domain OCT versus phase-resolved Doppler OCT, Invest. Ophthalmol. Vis. Sci. 49 (2008), 1873–1873.
- [39] A.M. Rollins, R. Ung-arunyawee, A. Chak, R.C.K. Wong, K. Kobayashi, M.V. Sivak, J.A. Izatt, Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design, Opt. Lett. 24 (1999) 1358–1360.
- [40] J.A. Izatt, M.D. Kulkarni, S. Yazdanfar, J.K. Barton, A.J. Welch, In vivo bi-directional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography, Opt. Lett. 22 (1997) 4139–4141.
- [41] M. Wojtkowski, A. Kowalczyk, R. Leitgeb, A.F. Fercher, Complex spectral OCT in eye imaging, Opt. Lett 27 (16) (2002) 1415–1417.
- [42] S. Tamborski, H.C. Lyu, H. Dolezyczek, M. Malinowska, G. Wilczynski, D. Szlag, T. Lasser, M. Wojtkowski, M. Szkulmowski, Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain, Biomed. Opt. Express 7 (11) (2016) 4400–4414.
- [43] K. Karnowski, A. Ajduk, B. Wieloch, S. Tamborski, K. Krawiec, M. Wojtkowski, M. Szkulmowski, Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos, Sci. Rep. 7 (1) (2017) 4165, http://dx.doi.org/10.1038/s41598-017-04220-8.
- [44] R. Leitgeb, M. Wojtkowski, C.K. Hitzenberger, M. Sticker, A. Kowalczyk, A.F. Fercher, Spectral measurement of absorption by spectroscopic frequency-domain OCT, Opt. Lett. 25 (2000) 820–822.
- [45] Y. Zahid, J. Wu, Ch. Yang, Spectral domain optical coherence tomography: a better OCT imaging strategy, BioTechniques 39 (December) (2005) S6–S13, http://dx.doi.org/10.2144/000112090.
- [46] A. Ulanowska, T. Ligor, M. Michel, B. Buszewski, Hyphenated and unconventional methods for searching volatile cancer biomarkers, Ecol. Chem. Eng. 17 (1) (2010) 9–23.
- [47] B. Buszewski, D. Grzywinski, T. Ligor, T. Stacewicz, Z. Bielecki, J. Wojtas, Detection of volatile organic compounds as biomarkers in breath analysis by different analytical techniques, Bioanalysis 5 (18) (2013) 2287–2306.
- [48] P.J. Mazzone, Exhaled breath volatile organic compound biomarkers in lung cancer, J. Breath Res. 6 (2012) 027106.
- [49] A. Ulanowska, E. Trawinska, P. Sawrycki, B. Buszewski, Chemotherapy control by breath profile with application of SPME-GC/MS method, J. Sep. Sci. 35 (2012) 2908–2913.
- [50] I.B. Silva, A.C. Freitas, T.A.P. Rocha-Santos, M.E. Pereira, A.C. Duarte, Breath analysis by optical fiber sensor for the determination of exhaled organic compounds with a view to diagnostics, Talanta 83 (2011) 1586–1594.
- [51] S. Kumar, J. Huang, J.R. Cushnir, P. Spanel, D. Smith, G.B. Hanna, Selected ion flow tube-ms analysis of headspace vaper from gastric content for the diagnosis of gastro-esophageal cancer, Anal. Chem. 84 (2012) 9550–9557.
- [52] E.H. Oh, H.S. Song, T.H. Park, Recent advances in electronic and bioelectronic noses and their biomedical applications, Enzyme Microb. Technol. 48 (6–7) (2011) 427–437.
- [53] T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikolajczyk, R. Medrzycki, B. Rutecka, Cavity ring down spectroscopy: detection of trace amounts of matter, Opto-Electron. Rev. 20 (2012) 34–41.
- [54] K. Musa-Veloso, S.S. Likhodii, E. Rarama, S. Benoit, Y.M.C. Liu, D. Chartrand, R. Curtis, L. Carmant, A. Lortie, F.J.E. Comeau, S.C. Cunnane, Breath acetone predicts plasma ketone bodies in children with epilepsy on a ketogenic diet, Nutrition 22 (2006) 1–8.
- [55] J.C. Anderson, W.J.E. Lamm, M.P. Hlasatala, Measuring airway exchange of endogenous acetone using a single-exhalation breathing maneuver, J. Appl. Physiol. 100 (2005) 880–889.
- [56] C.J. Wang, S.T. Scherrer, D. Hossain, Measurements of cavity ringdown spectroscopy of acetone in the ultraviolet and near infrared spectral regions: potential for development of a breath analyzer, Appl. Spectrosc. 58 (7) (2004) 784–791.
- [57] D.J. Kearney, T. Hubbard, D. Putnam, Breath ammonia measurement in Helicobacter pylori infection, Dig. Dis. Sci. 47 (2002) 2523–2530.
- [58] D. Smith, T. Wang, A. Pysanenko, P. Spanel, A selected ion flow tube mass spectrometry study of ammonia in mouth- and nose-exhaled breath and in the oral cavity, Rapid Commun. Mass Spectrom. 22 (2008) 783–789.
- [59] D.K. Stevenson, H.J. Vreman, Carbon monoxide and bilirubin production in neonates, Pediatr. Rev. 100 (1997) 252–259.
- [60] M. Yamaya, K. Sekizawa, S. Ishizuka, M. Monma, K. Mizuta, H. Sasaki, Increased carbon monoxide in exhaled air of subjects with upper respiratory tract infections, Am. J. Respir. Crit. Care Med. 158 (1998) 311–314.
- [61] M.J. Thorpe, K.D. Moll, J.R. Jones, B. Safdi, J. Ye, Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection, Science 311 (2006) 1595–1599.
- [62] G. Neri, A. Bonavita, S. Ipsale, G. Micali, G. Rizzo, N. Donato, Carbonyl Sulphide (COS) monitoring on MOS sensors for biomedical applications, ISIE 2007 (2007) 2776–2781.
- [63] L. Bennett, L. Ciaffoni, W. Denzer, G. Hancock, A.D. Lunn, R. Peverall, S. Praun, G.A.D. Ritchie, A chemometric study on human breath mass spectra for biomarker identification in cystic fibrosis, J. Breath Res. 3 (2009) 1–7.
- [64] C. Fischer, M.W. Sigrist, Trace gas sensing in the 3.3 µm region using a diode based difference frequency laser photoacoustic system, Appl. Phys. B: Lasers Opt. 75 (2002) 305–310.
- [65] S.R. Svedahl, K. Svendsen, E. Tufvesson, P.R. Romundstad, A.K. Sjaastad, T. Qvenild, B. Hilt, Inflammatory markers in blood and exhaled air after short-term exposure to cooking fumes, Ann. Occup. Hyg. 57 (2) (2012) 230–239.
- [66] R. Matthew, Y.B. McCurdy, G. Wysocki, R. Lewicki, F.K. Tittel, Recent advances of laser-spectroscopy-based techniques for applications in breath analysis, J. Breath Res. 1 (2007) 014001.
- [67] G.D. Lawrence, G. Cohen, Ethane exhalation as an index of in vivo lipid peroxidation: concentrating ethane from a breath collection chamber, Anal. Biochem. 122 (1982) 283–290.
- [68] C.S. Patterson, L.C. McMillan, K. Stevenson, K. Radhakrishnan, P.G. Shiels, M.J. Padgett, K.D. Skeldon, Dynamic study of oxidative stress in renal dialysis patients based on breath ethane measured by optical spectroscopy, J. Breath Res. 1 (2) (2007) 026005:1–026005:8.
- [69] W. Miekisch, J.K. Schubert, G.F. Noeldge-Schomburg, Diagnostic potential of breath analysis-focus on volatile organic compounds, Clin. Chim. Acta 347 (2004) 25–39, http://dx.doi.org/10.1016/j.cccn.2004.04.023.
- [70] L. Le Marchand, L.R. Wilkens, P. Harwood, R.V. Cooney, Use of breath hydrogen and methane as markers of colonic fermentation in epidemiologic studies: circadian patterns of excretion, Environ. Health Perspect. 98 (1992) 199–202.
- [71] K. McCluskie, M.A. Birrell, S. Wong, M.G. Belvisi, Nitric oxide as a noninvasive biomarker of lipopolysaccharide-induced airway inflammation: possible role in lung neutrophilia, J. Pharmacol. Exp. Ther. 311 (2004) 625–633.
- [72] M.A. Birrell, K. McCluskie, E. Hardaker, R. Knowles, M.G. Belvisi, Utility of exhaled nitric oxide as a noninvasive biomarker of lung inflammation in a disease model, Eur. Respir. J. 28 (2006) 1236–1244.
- [73] http://www.thoracic.org/about/overview.php.
- [74] T. Kondo, T. Mitsui, M. Kitagawa, Y. Nakae, Association of fasting breath nitrous oxide concentration with gastricjuice nitrate and nitrite concentrations and helicobacter pylori infection, Dig. Dis. Sci. 45 (2000) 2054–2057.
- [75] R.A. Dweik, D. Laskowski, H.M. Abu-Soud, F.T. Kaneko, R. Hutte, D.J. Stuehr, S.C. Erzurum, Nitric oxide synthesis in the lung, regulation by oxygen through a kinetic mechanism, J. Clin. Invest. 101 (1998) 660–666.
- [76] Y. Wang, M. Nikodem, E. Zhang, F. Cikach, J. Barnes, S. Comhair, R. Dweik, C. Kao, G. Wysocki, Shot-noise limited Faraday rotation spectroscopy for detection of nitric oxide isotopes in breath, urine, and blood, Sci. Rep. 5 (2015), http://dx.doi.org/10.1038/srep09096, Article 9096.
- [77] D. Szabra, A. Prokopiuk, J. Mikołajczyk, T. Ligor, B. Buszewski, Z. Bielecki, Air sampling unit for breath analyzers, Rev. Sci. Instrum. 88 (2017), 115006-1–115006-6.
- [78] https://www.vigo.com.pl/.
- [79] American Thoracic Society, European Respiratory Society, ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, Am. J. Respir. Crit. Care Med. 171 (2005) 912–930.
Uwagi
1. The research presented in this paper has been carried out in the laboratory of Institute of Optoelectronics MUT, supported by the National Centre for Research and Development and National Science Centre in the scope of Projects: ID: 179900, DEC- 2011/03/B/ST7/02544.
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-365f74f2-f33d-4cbe-b271-a62d3b358c22