Czasopismo
2017
|
Vol. 1(114)
|
173--185
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Niskoczęstotliwościowe przewodnictwo elektryczne ferroelektrycznej ceramiki PZT PFS
Języki publikacji
Abstrakty
Low frequency AC conductivity has been studied in ferroelectric ceramics PZT + PFS (Pb[(Fe1/3Sb2/3)xTiyZrz]O3 with x = 0.1 and y = 0.43, 0.44, 0.47) using Fourier transformation of charging and discharging currents. The results are interpreted in terms of fractal structure of the randomly generated clusters formed by sequentially correlated hopping paths of charge carriers.
W artykule przedstawiono przewodnictwo zmiennoprądowe ceramiki ferroelektrycznej PZT + PFS (Pb[(Fe1/3Sb2/3)xTiyZrz]O3, gdzie x = 0.1 i y = 0,43, 0,44, 0,47) w zakresie ultra niskich częstotliwości obliczone na podstawie analizy Fouriera prądów polaryzacji i depolaryzacji dielektrycznej. Wyniki zostały zinterpretowane na podstawie fraktalnej struktury klasterów generowanych przez stochastyczny sekwencyjny hopping nośników ładunku.
Czasopismo
Rocznik
Tom
Strony
173--185
Opis fizyczny
Bibliogr. 29 poz., wz., tab., wykr.
Twórcy
autor
- Institute of Physics, Faculty of Physics Mathematics and Computer Science, Cracow University of Technology, aosak@ifpk.pk.edu.pl
Bibliografia
- [1] Shirane G., Suzuki K., Takeda A., Phase transition in Solid Solutions PbZrO3 and PbTiO3 (II) X ray study, Journal of the Physical Society of Japan, Vol. 7, 1952, 12–18.
- [2] Jaffe B., Cook W.R., Piezoelectric Ceramic, Academic Press, London 1971, 136.
- [3] Noheda B., Cox D.E., Gonzalo J.A., Cross L.E., Park S.E., A monoclinic ferroelectric phase in the Pb (Zr1-xTix) O3 solid solution, Applied Physics Letters, Vol. 74, 1999.
- [4] Glazer A.M., Thomas P.A., Baba-Kishi K.Z., Pang G.K.H., Tai C.W., Influence of short-range and long range order on the evolution of the morphotropic phase boundary of Pb(Zr1-xTix)O3,Physical Reviev B, Vol. 70, 184123–1–9.
- [5] Osak A., Pawelczyk M., Ptak W.S., Investigation of the structure, pyro- and piezoelectric properties of a ferroelectric ceramics of PZT+(FeSb), Ferroelectics, Vol. 186, 1996, 123–126.
- [6] Elliot S. R., Ac conduction in amorphous chalcogenite and pnictidesemicondactors, Advances in Physics, Vol. 36, 1987,131–218.
- [7] Jonsher A.K., Dielectric relaxation in solids Ch. 4, Chelsae Dielectric Press, London 1984.
- [8] Pollak M. On the Frequency Dependence of Conductivity in Amorphous Solids, Philosophical Magazine, Vol. 23, 1971, 519–2.
- [9] Miller A., Abrahams E., Impurity Conduction at Low Concentration, Physical Review, Vol. 120, 1960, 745–755.
- [10] Ambegaokar V., Halperin B.J., Langer J.S., Hopping Conductivity in Disordered Systems, Physical Review B, Vol. 7, 1971, 2612–2620.
- [11] Butcher P.N., On the rate equation formulation of the hopping conductivity problem, Journal of Physics C: Solid State Physics, Vol. 5, 1972, 1817–1829.
- [12] Scher H., Lax M., Stochastic transport in disordered solids, Physical Review B, Vol. 7, 1973, 4491–4519.
- [13] Dyre J.C., The radom free-energy barier model for AC conduction in disordered solids, Journal of Applied Physics, Vol. 64, 1988, 2456–2468.
- [14] Pike G.E., Ac conductivity of scandium oxide and new hopping model of conductivity, Physical Review B, Vol. 6, 1972, 1572–1580.
- [15] Böttger H.B., Bryksin V.V., Yashin G. Yu., Cluster approximatelly in the theorry of hopping model of conductivity in disordered solids, Journal Physics C: Solids State Physics, Vol. 12, 1979, 2797–2808.
- [16] Summerfield S., Butcher P.N., A unified equivalent-circuit approach to the theory of AC and DC hopping conductivity in disordered systems, Journal of Physics C: Solid State Physics, Vol. 15, 1982, 7003–7016.
- [17] Hunt A., The AC conductivity of variable range hopping systems such as amorphous semiconductors, Philosophical Magazine B, Vol. 64, 1991, 579–589.
- [18] Hunt A., The AC conductivity of the Fermi glass. A model for glassy conduction, Solid State Communication, Vol. 80, 1991, 151–155.
- [19] Hunt A., Frequency dependent conductivity of the Fermi glass, Journal of Physics Condensed Matter, Vol. 4, 1992, 6957–6970.
- [20] Moore E.J., Numerical studies of the AC conductivity of hopping system I. Effects of space and energy disorder, Journal of Physics C: Solid State Physics, Vol. 7, 1974, 1840–1853.
- [21] Niklassan G.A., Fractal aspects of the dielectric response of charge carriers in disordered materials, Journals of Applied Physics, Vol. 62, 1987, R1–14.
- [22] Pollak M., Pohl H.A., Dielectric dispersion in some polymer and polyelectrolyte. A model, Journal Chemical Physics, Vol. 67, No. 7, 1975, 2980–2987.
- [23] Skal A.S., Shklovski B.J., Soviet Physics of Semiconductors, Vol. 8, 1975, 1029.
- [24] Stauffler D., Introduction to Percolation Theory, Taylor and Francis, London 1985.
- [25] Osak A., Jankowska-Summara I., Electrical transport in ferroelectric Pb[(Fe1/3Sb2/3)xTiyZrz]O3 ceramics, Phase Transitions, Vol. 82, 2009, 899–909.
- [26] Osak A., Ultra low frequency dielectric dispersion in PZT-PFS ferroelectric ceramics, Journal of Advanced Dielectrics, Vol. 3, 2013.
- [27] Erdem E., Eichel R.A., Kungl H., Hoffman M.J., Ozarowski A., van Tal J., Brunel L.C., Characterization of (FeZrTi-VO’’) defects dipoles in (La, Fe) codoped PZT 52.2/47.5 Piezoelectric ceramics by Multifrequency Electron Paramagnetic Resonance Spectroscopy, IEEE Trans. Ultrasonic, Ferroelectrics, Frequency Contr. Vol. 55, 2008, 1061–1068.
- [28] Chen Ang., Zhi Yu and Cross L.E., Oxygen-vacancy low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3, Physical Review B, Vol. 62, 2000, 228–236.
- [29] Marton P., Elsässer C., Switching of a substitutional-iron/oxygen-vacancy defect complex in ferroelectric PbTiO3 from first principles, Physical Review B, Vol. 83, 2011, 020106–1–4.
Uwagi
EN
Section "Physics"
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-36050f0d-40aa-41a2-8e6d-e3662b617987