Warianty tytułu
Języki publikacji
Abstrakty
This work examines biochar from carbonization of grape waste, and oat and buckwheat husks at 450ºC. The main aspects of the work concern the analysis of the fixed carbon and ash content in accordance with the European Standard. Obtained results showed that biochar from oat and buckwheat husk can be used for barbeque charcoal and barbeque charcoal briquettes production, whereas biochar derived from grape waste can be used for the charcoal briquettes production. Thermogravimetric analysis showed that biochar from grape stalk is characterized by the highest ignition and burnout performance, but in relation to the remaining samples, combustion process occurs in a narrow range of time and temperature. Obtained results showed that biochar from oat and buckwheat husks has properties, as well as combustion stability and reactivity, similar to commercial charcoal.
Czasopismo
Rocznik
Tom
Strony
45--51
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
- Insittute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland, jkluska@imp.gda.pl
autor
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering and EkoTech Center, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
- [1] Bekele, B., & Kemal, A.W. (2022). Determents of sustainable charcoal production in AWI zone; the case of Fagita Lekoma district, Ethiopia. Heliyon, 8, e11963. doi: 10.1016/j.heliyon.2022.e11963
- [2] Rotowa, O.J., Egbwole, Z.T., Adeagbo, A.A., & Blessing, O.M. (2019). Effect of Indiscriminate Charcoal Production on Nigeria Forest Estate. International Journal of Environmental Protection and Policy, 7, 134-139. doi: 10.11648/j.ijepp.20190706.12
- [3] Tabe-Ojong, M.P. Jr. (2023). Action against invasive species: Charcoal production, beekeeping, and Prosopis eradication in Kenya. Ecological Economics, 203, 107614. doi:10.1016/j.ecolecon.2022.107614
- [4] Kluska, J., Ochnio, M., & Kardaś, D. 2020. Carbonization of corncobs for the preparation of barbecue charcoal and combustion characteristics of corncob char. Waste management, 105, 560–565. doi: 10.1016/j.wasman.2020.02.036
- [5] Lu, K.M., Lee, W.J., Chen, W.H., Liu, S.H., & Lin, T.C. (2012). Torrefaction and low temperature carbonization of oil palm fiber and eucalyptus in nitrogen and air atmospheres. Bioresource Technology, 123, 98–105. doi: 10.1016/j.biortech.2012.07.096.
- [6] Angın, D. (2013). Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresource Technology, 128, 593–597. doi: 10.1016/j.biortech.2012.10.150
- [7] Xu, D., Cao, J., Li, Y., Howard, A., & Yu, K. (2019). Effect of pyrolysis temperature on characteristics of biochars derived from different feedstocks: A case study on ammonium adsorption capacity. Waste management, 87, 652-660. doi: 10.1016/j.wasman.2019.02.049
- [8] Gubitosa, J., Rizzi, V., Laurenzana, A., Scavone, F., Frediani, E., Fibbi, G., et al. (2022). The “End Life” of the Grape Pomace Waste Become the New Beginning: The Development of a Virtuous Cycle for the Green Synthesis of Gold Nanoparticles and Removal of Emerging Contaminants from Water. Antioxidants, 11, 994. https://doi.org/10.3390/antiox11050994
- [9] Yuan, Y., Li, F., Han, N., Zeng, B., Imaizumi, Y., Na, R., et al. (2022). Exploring the Valorization of Buckwheat Waste: A TwoStage Thermo-Chemical Process for the Production of Saccharides and Biochar. Fermentation. 8, 573. doi: 10.3390/fermentation8110573
- [10] Jokinen, I., Pihlava, J.-M., Puganen, A., Sontag-Strohm, T., Linderborg, K.M., Holopainen-Mantila, U., et al. (2021). Predicting the Properties of Industrially Produced Oat Flours by the Characteristics of Native Oat Grains or Non-Heat-Treated Groats. Foods. 10(7), 1552. doi:10.3390/foods10071552
- [11] Ferraz, F.M., & Yuan, Q. (2020). Performance of oat hulls activated carbon for COD and color removal from landfill leachate. Journal of Water Process Engineering, 33, 101040. doi:10.1016/j.jwpe.2019.101040
- [12] Fan, M., Marshall, W., Daugaard, D., & Brown, R.C. (2004). Steam activation of chars produced from oat hulls. Bioresource Technology, 93, 103–107. doi:10.1016/j.biortech.2003.08.016
- [13] Yu, K., Zhang, Z, Jicai, L., & Liang C. (2021). Natural biomassderived porous carbons from buckwheat hulls used as anode for lithium-ion batteries. Diamond and Relatated Materials. 119,108553. doi: 10.1016/j.diamond.2021.108553
- [14] Deiana, A.C., Sardella, M.F., Silva, H., Amaya, A., & Tancredi, N. (2009). Use of grape stalk, a waste of the viticulture industry, to obtain activated carbon. Journal of Hazardous Materials, 172, 13-19. doi: 10.1016/j.jhazmat.2009.06.095
- [15] Pozo, C., Rego F, Puy N., Bartrolí, J., Fàbregas, E., Yang Y., et al. (2022). The effect of reactor scale on biochars and pyrolysis liquids from slow pyrolysis of coffee silverskin, grape pomace and olive mill waste, in auger reactors. Waste Management, 148, 106-116. doi: 10.1016/j.wasman.2022.05.023
- [16] Xiong, S., Zhang, S., Wu, Q., Guo, X., Dong, A., & Chen, C. (2014). Investigation on cotton stalk and bamboo sawdust carbonization for barbecue charcoal preparation. Bioresource Technology, 152, 86–92. doi: 10.1016/j.biortech.2013.11.005
- [17] Wang, C., Zhang, X., Liu, Y., & Che, D. (2012). Pyrolysis and combustion characteristics of coals in oxyfuel combustion. Applied Energy. 2012, 97, 264–273. doi: 10.1016/j.apenergy.2012.02.011
- [18] Moon, C., Sung, Y., Ahn, S., Kim, T., Choi, G., & Kim, D. (2013). Effect of blending ratio on combustion performance in blends of biomass and coals of different ranks. Experimental Thermal and Fluid Science, 47, 232–240. doi:10.1016/j.expthermflusci. 2013.01.019
- [19] Mureddu, M., Dessì, F., Orsini, A., Ferrara F., & Pettinau, A. Air- and oxygen-blown characterization of coal and biomass by thermogravimetric analysis. Fuel, 2018, 212, 626–637. doi:10.1016/j.fuel.2017.10.005
- [20] Bilkic, B., Haykiri-Acma, H., & Yaman, S. (2020). Combustion reactivity estimation parameters of biomass compared with lignite based on thermogravimetric analysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45, 7068-7087. doi: 10.1080/15567036.2020.1851326
- [21] Ronda, A., Della, Z.M. Gianfelice G., Ianez-Rodriguez, I., & Canu P. (2019). Smouldering of different dry sewage sludges and residual reactivity of their intermediates. Fuel, 247, 148–59. doi:10.1016/j.fuel.2019.03.026
- [22] Xie, W., Huang, J., Liu, J., Zhao, Y., Chang, K., Kuo, J., et al. (2018). Assessing thermal behaviors and kinetics of (co-) combustion of textile dyeing sludge and sugarcane bagasse. Applied Thermal Engineering, 131, 874–83. doi: 10.1016/j.applthermaleng.2017.11.025.
- [23] Sieradzka, M., Gao, N., Quan, C., Mlonka-Medrala, A., & Magdziarz, A. (2020). Biomass thermochemical conversion via pyrolysis with integrated CO2 capture. Energies, 13, 1050. doi:10.3390/en13051050
- [24] Kumar, R., & Singh, R.I. (2017). An investigation of co-combustion municipal sewage sludge with biomass in a 20kW BFB combustor under air-fired and oxygen-enriched condition. Waste Management, 70, 114–26. doi: 10.1016/j.wasman.2017.09.005
- [25] Ma, Q., Han, L., & Huang, G. (2017). Evaluation of different water-washing treatments effects on wheat straw combustion properties. Bioresource Technology, 245, 1075–83. doi: 10.1016/j.biortech.2017.09.052
- [26] Sarikaya, A.C., Acma, H.H., & Yaman S. (2019). Synergistic interactions during co-combustion of lignite, biomass, and their chars. Journal of Energy Resources Technology, 141, 122203.doi: 10.1115/1.4044057
- [27] Godlewska, P., Ok, Y.S., & Oleszczuk, P. (2021). THE DARK SIDE OF BLACK GOLD: Ecotoxicological aspects of biochar and biochar-amended soils. Journal of Hazardous Materials, 403, 123833. doi: 10.1016/j.jhazmat.2020.123833
- [28] Qian, W., Xie, Q, Huang, Y., Dang, J., Sun, K., Yang, Q., et al. (2012). Combustion characteristics of semicokes derived from pyrolysis of low rank bituminous coal. Journal of Mining Science and Technology. 22, 645-650. doi: 10.1016/ j.ijmst.2012.08.009
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-35ccb0a9-3fe7-47a3-994e-c57007aff39e