Warianty tytułu
Phycobiliproteins – colorful compounds of unusual structure and interesting properties and applications
Języki publikacji
Abstrakty
Phycobiliproteins - colorful proteins produced by microalgae and cyanobacteria, owe their unique properties to prosthetic groups, which are open-chain tetrapyrroles. As they are produced in the biosynthesis process, phycobiliproteins possess special biotechnological potential also due to their useful physicochemical properties. A classic example is the use of these proteins - especially phycocyanin with an intense blue color - as natural dyes in the food, cosmetic and pharmaceutical industries. In the products to which they are added, they are responsible not only for color, but also for various biological activities, providing these products with additional values. In this category, the most frequently mentioned are the antioxidant properties of phycobiliproteins, which may be used in the treatment of neurodegenerative diseases, and the fluorescent properties, especially of phycoerythrin, which also predispose these proteins to use in biomedical research. The results of contemporary work on the acquisition and use of phycobiliproteins indicate that the key to the wider use of these substances is to understand the process of biosynthesis of individual groups of these colored proteins, as well as developing ways to effectively control their production. Due to the different physicochemical properties and biological activity of individual, structurally diverse phycobiliproteins, the specificity of the actions taken is extremely important in this case. Since there are real reasons to increase the scale of production of these substances by modifying the conditions of microalgae cultivation, we believe that obtaining larger amounts of specific phycobiliproteins in pure form will intensify the current use and open up new possibilities for the use of these valuable proteins.
Czasopismo
Rocznik
Tom
Strony
651--671
Opis fizyczny
Bibliogr. 53 poz., rys., wykr., tab.
Twórcy
autor
- Instytut Chemii, Uniwersytet Opolski ul. Oleska 48, 45-052 Opole
autor
- Instytut Chemii, Uniwersytet Opolski ul. Oleska 48, 45-052 Opole
autor
- Instytut Chemii, Uniwersytet Opolski ul. Oleska 48, 45-052 Opole, jacek.lipok@uni.opole.pl
Bibliografia
- [1] I. N. Stadnichuk, P. M. Krasilnikov, D.V. Zlenko, Microbiology, 2015, 84, 101.
- [2] M. Hsieh -Lo, G. Castillo, M.A. Ochoa-Becerra, L. Mojica, Algal. Res., 2019, 42, 101600.
- [3] V.K. Kannaujiya, D. Kumar, J. Pathak, R.P. Sinha, Cyanobacteria, From Basic Science to Application, Elsevier, Londyn, 2019.
- [4] E. Gantt, C.A. Lipschultz, J. Grabowski, B.K. Zimmerman, Plant. Physiol., 1979, 63, 615.
- [5] D.A. Bryant, G. Guglielmi, N.T. de Marsac, A.M. Castets, G. Cohen-Bazire, Arch. Microbiol., 1979, 123, 113.
- [6] W.M. Schluchter, G. Shen, R.M. Alvey, A. Biswas, N.A. Saunée, S.R. Williams, C.A. Mille, D.A. Bryant, Adv. Exp. Med. Biol., 2010, 675, 211.
- [7] F. Zhao, S. Qin, J. Mol. Evol., 2006, 63, 330.
- [8] H. Scheer, K. Zhao, Mol. Microbiol., 2008, 68, 263.
- [9] A.R. Grossman, L.G. Waasbergen, D. Kehoe, Light Harvesting Antennas In Photosynthesis, Springer, Dordrecht, 2003.
- [10] S.I. Beale, Chem. Rev., 1993, 93, 785.
- [11] H. Chakdar, S. Pabbi, Frontier Discoveries and Innovations in Interdisciplinary Microbiology, Springer, Nowe Delhi, 2016.
- [12] T. Dammeyer, N. Frankenberg-Dinkel, Photochem. Photobio. Sci., 2008, 7, 1121.
- [13] S.L. Tu, A. Gunn, M.D. Toney, R.D. Britt, J.C. Lagarias, J. Am. Chem. Soc., 2004, 126, 8682.
- [14] B. Ledermann, M. Schwan, J.A. Sommerkamp, E. Hofmann, N. Frankenberg-Dinkel, FEBS J., 2018, 285, 339.
- [15] N. Frankenberg, J.C. Lagarias, J. Biol. Chem., 2003, 278, 9219.
- [16] T. Dammeyer, N. Frankenberg-Dinkel, J. Biol. Chem., 2006, 281, 27081.
- [17] C.D. Fairchild, J. Zhao, J. Zhou, S.E. Colson, D.A. Bryant, A.N. Glazer, A. N., Proc. Natl. Acad. Sci. USA, 1992, 89, 7017
- [18] A. Shukla, A. Biswas, N. Blot, F. Partensky, J.A. Karty, L.A. Hammad, L. Garczarek, A. Gutu, W.M. Schluchter, D.M. Kehoe, PNAS, 2021, 109, 20136.
- [19] K.H. Zhao, M.G. Denga, M. Zheng, M. Zhou, A. Parbel, M. Storf, M. Meyer, B. Strohmann, H. Scheer, FEBS Letters, 2000, 469, 9.
- [20] R. Gasper, J. Schwach, J. Hartmann, A. Holtkamp, J. Wiethaus, N. Riedel, E. Hofmann, N. Frankenberg-Dinkel, J. Biol. Chem., 2017, 292.
- [21] M. Kupka, J. Zhang, W.L. Fu, J.M. Tu, S. Böhm, P. Su, Y. Chen, M. Zhou, H. Scheer, K.H. Zhao, J. Biol. Chem., 2009, 284, 36405.
- [22] K.H. Zhao, P. Su, J.M. Tu., X. Wang, H. Liu, M. Plöscher, L. Eichacker, B. YanG, M. Zhou, H. Scheer, Biochemistry, 2007, 104, 14300.
- [23] I.C. Hu, T.R. Lee, H.F. Lin, C.C. Chiueh, P.C. Lyu, Biochemistry, 2006, 45, 7092.
- [24] E. Manirafasha, T. Ndikubwimana, X. Zeng, Y. Lu, K. Jing, Biochem. Eng. J., 2016, 109, 282.
- [25] F. Pagels, A.C. Guedes, H.K. Amaro, A. Kijjoa, V. Vasconcelos, Biotechnol. Adv., 2019, 37, 422.
- [26] J.L. Godínez-Ortega, P. Snoeijs, D. Robledo, Y. Freile-Pelegrín, M. Pedersén, J. Appl. Phycol., 2008, 20, 253.
- [27] R.R Sonani, R.P. Rastogi, R. Patel, D. Madamvar, World. J. Biol. Chem., 2016, 7, 100.
- [28] J.I.S. Khattar, S, Kaur, S. Kaushal, Y. Singh, D.P. Singh, S. Rana, A. Gulati, Algal. Res., 2015, 12, 463.
- [29] X. Pan, F. Chang, L. Kang, Y. Liu, G. Li, D. Li, J. Plant. Phyciol., 2008, 165, 1691.
- [30] J.M. Salman, E. Abdul-Adel, Int. J. Pharmatech. Res., 2016, 9, 446.
- [31] W. Wang, M. Jiang, Y. Sheng, Environ. Chem., 2020, 40, 342.
- [32] A. Piro, D.M. Nisticò, D. Oliva, F.A. Fagà, S. Mazzuca, Microorganisms, 2022, 10, 1063.
- [33] Hemlata, T. Fatma, Bull. Environ. Contam. Toxicol., 2009, 83, 509.
- [34] C.S. Lobban, D.J. Chapman, B.P. Kremer, Experimental phycology - A laboratory manual, Cambridge University Press, Cambridge, 1988.
- [35] G. Chamorro-Cevallos, V.C. Jesús, G.A. Gutiérrez-Rebolledo, M. Hernández-Ortega. L. Valadez-Carmona, A. Mojica-Villegas, G. Gutiérrez-Salmeán, Int. J. Food. Nutriti. Sci., 2016, 3, 275.
- [36] G. Nemer, N. Louka, E. Vorobiev, D. Salameh, J.M. Nicaud, R.G. Maroun, M. Koubaa, Fermentation, 2021,7, 36.
- [37] P. Ping, Y. Wu, G. Wang, T. Jia, Y. Zhang, Crit. Rev. Food. Sci. Nutr., 2017, 57, 3840
- [38] M.U. Nethravathy, J.G. Mehar, S.N. Mudliar, A.Y. Shekh, Compr. Rev. Food Sci. Food Saf., 2019, 18, 1882.
- [39] Q. Wu, L. Liu, A. Miron, B. Klímová, D. Wan, K. Kuča, Arch. Toxicol., 2016, 90, 1817.
- [40] B. Fernández-Rojas, J. Hernández-Juárez, J. Pedraza-Chaverria, J. Funct. Food., 2014, 11, 375.
- [41] S. Sekar, M. Chandramohan, J. Appl. Phycol., 2008, 20, 113.
- [42] C. Romay, J. Armesto, D. Remirez, R. González, N. Ledon, I. García, Inflamm. Res. 1998, 47, 36.
- [43] G. Prabakaran, P. Sampathkumar, M. Kavisri, M. Moovendhan, Int. J. Biol. Macromol., 2020, 153, 256.
- [44] V.B. Bhat, K.M. Madyastha, Biochem. Biophys. Res. Commun., 2001, 285, 262.
- [45] Q. Liu, W. Li, S. Qin, Biomed. Pharmacother., 2020, 130, 110553.
- [46] E. Garcia-Pliego, M. Franco-Colin, P. Rojas-Franco, V. Blas-Valdivia, J. I. Serrano-Contreras, G. Pentón-Rol, E. Cano-Europa, Food. Funct., 2021, 12, 2985.
- [47] P. Pleonsil, S. Soogarun, Y. Suwanwong, Int. J. Biol. Macromol., 2013, 60, 393.
- [48] S.M. Bannu, D. Lomada, S. Gulla, T. Chandrasekhar, P. Reddanna, M.C. Reddy, Curr. Drug. Metab., 2020, 20, 967.
- [49] S. Bharathiraja, H. Seo, P. Manivasagan, M.S. Moorthy, S. Park, Oh J., Molecules, 2016, 21, 1470.
- [50] S. Hao, S. Li, J. Wang, L. Zhao, C. Zhang, W. Haunng, C. Wang, J. Agric. Food. Chem., 2018, 66, 10921.
- [51] X. Qiang, L. Wang, J. Niu, X. Gong, G. Wang, Int. J. Biol. Macromol., 2021, 193, 1910.
- [52] A. Andreoni, U. Bernini, M. Mastrocinque, E. Quarto, P. Russo, J. Biochem. Bioph. Meth., 1990, 20, 195.
- [53] N.E.A. El-Naggar, M.H. Hussein, A.A. El-Sawah A. A., Sci. Rep., 2017, 7, 1.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-35c4d7aa-9983-44a6-b2d7-51165948479c