Czasopismo
2000
|
Vol. 20, Fasc. 2
|
337--341
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
First passage times for discrete-time stochastic processes are studied from a global point of view, in terms of a mapping that takes a numerical sequence to its first passage time function. The continuity properties of this mapping with respect to Skorohod’s J1 and M1 topologies are examined. One typically has continuity in M1, but in J1 only under extra assumptions. The results are applied to random walks and renewal theory.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
337--341
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
- Department of Mathematics, Uppsala University, Box 480, 75106 Uppsala, Sweden, llc@math.uu.se
Bibliografia
- [1] P. Billingsley, Convergence of Probability Measures, Wiley, New York 1968.
- [2] D. L. Cohn, Measure Theory, Birkhäuser, Boston; Mass., 1980.
- [3] A. Gut, First passage times for perturbed random walks, Sequential Anal. 11 (1992), pp. 149-179.
- [4] T. L. Lai and D. Siegmund, A non-linear renewal theory with applications to sequential analysis I, Ann. Statist. 5 (1977), pp. 946-954.
- [5] T. L. Lai and D. Siegmund, A non-linear renewal theory with applications to sequential analysis II, Ann. Statist. 7 (1979), pp. 60-76.
- [6] L. Larsson-Cohn, Some limit and continuity theorems for perturbed random walks, Technical Report 1999: 2, Dept, of Mathematics, Uppsala University, 1999.
- [7] T. Lindvail, Weak convergence of probability measures and random functions in the function space D [0, ∞), J. Appl. Probab. 10 (1973), pp. 109-121.
- [8] A. V. Skorohod, Limit theorems for stochastic processes, Theory Probab. Appl. 1 (1956), pp. 261-290. .
- [9] W. Whitt, Some useful functions for functional limit theorems, Math. Oper. Res. 5 (1980), pp. 67-85.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-35ac4ed9-b931-48ef-b154-e2467a2c9222