Warianty tytułu
Języki publikacji
Abstrakty
The current study is aiming to expose the efficiency of surface flow constructed wetland (CW) assisted by Pistia stratiote and Salvinia molesta in the remediation of landfill leachates. A laboratory-scale surface flow constructed wetland was constructed to imitate the characteristic of a natural pond. Composite sample of leachates was collected and transported to the laboratory for further analysis and studies. The removal efficiency of phenol, pesticides, sulphate, chloride, colour, turbidity, total suspend solid (TSS), total dissolved solid (TDS), biological oxygen demand (BOD), chemical oxygen demand (COD), ammonia nitrate and heavy metals (Pb, Cr, Cu, Cd, Ni, Hg)). The removal of heavy metal ions in the CW was determined by using a phyto-system dynamic (phyto-SDA) model while the composite design (CCD) type of response surface methodology (RSM) was employed in this study for the optimization of pesticides and phenol removal from the landfill leachates by the constructed wetland (CW). The study also predicts that the deviation from the linearity between the heavy metals in the leachates and heavy metals in the sediment and in the plant tissues is influenced by the physicochemical status of the leachate and the mixed cultivation of Pistia stratiote and Salvinia molesta. The study reaffirms the role of sediments in the determination of the fate of heavy metals due to its crucial role in the bioavailability of heavy metals for uptake by P. stratiotes and S. molesta in a CW. The study also shows a positive effect of concentration and exposure time on the reduction efficiency of both pesticides and phenol. The result shows that exposure time and concentration of phenol and pesticides are useful in the optimization of the removal efficiency of pesticides and phenol.
Czasopismo
Rocznik
Tom
Strony
226--236
Opis fizyczny
Bibliogr. 62 poz., rys., tab.
Twórcy
autor
- School of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511436, China
- Department of Environmental Management, Kaduna State University, Kaduna, Nigeria
autor
- School of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511436, China, kamel2021@jnu.edu.cn
Bibliografia
- 1. Arliyani I, Tangahu BV, Mangkoedihardjo S (2021) Selection of Plants for Constructed Wetlands Based on Climate and Area in the Interest of Processing Pollutant Parameters on Leachate: A Review. IOP Conference Series: Earth and Environmental Science 835 (1): 012003. doi:10.1088/1755-1315/835/1/012003
- 2. Aygun A, Dogan S, Argun ME, Ates H (2019) Removal of sulphate from landfill leachate by crystallization. Environmental Engineering Research 24 (1): 24-30. doi:10.4491/eer.2017.179
- 3. Braskerud BC (2001) The influence of vegetation on sedimentation and resuspension of soil particles in small constructed wetlands. Journal of environmental quality 30 (4): 1447-1457. doi:10.2134/jeq2001.3041447x
- 4. Clarke SJ, Wharton G (2001) Sediment nutrient characteristics and aquatic macrophytes in lowland English rivers. The Science of the total environment 266 (1-3): 103-112. doi:10.1016/s0048-9697(00)00754-3
- 5. Ehrig H-J, Stegmann R (2018) Chapter 10.2 Leachate Quality. In: Cossu R, Stegmann R (eds) Solid Waste Landfilling. Elsevier, pp. 511-539. doi:https://doi.org/10.1016/B978-0-12-407721-8.00026-7
- 6. Eid EM, Dakhil MA, Hassan LM, Salama SG, Galal TM (2021) Uptake Prediction of Eight Potentially Toxic Elements by Pistia stratiotes L. Grown in the Al-Sero Drain (South Nile Delta, Egypt): A Biomonitoring Approach. Sustainability 13 (9). doi:10.3390/su13095276
- 7. Ferronato N, Torretta V (2019) Waste Mismanagement in Developing Countries: A Review of Global Issues. Int J Environ Res Public Health 16 (6): 1060. doi:10.3390/ijerph16061060
- 8. Garbisu C, Alkorta I (2001) Phytoextraction: a costeffective plant-based technology for the removal of metals from the environment. Bioresource Technology 77 (3): 229-236. doi:https://doi.org/10.1016/S0960-8524(00)00108-5
- 9. Gowri A, Balasubramani R, Muthunarayanan V, Nguyen DD, Nguyen X, Chang S-W, Nguyen VK, Thamaraiselvi C (2020) Phytoremediation Potential of Freshwater Macrophytes for Treating DyeContaining Wastewater. Sustainability 13: 329. doi:10.3390/su13010329
- 10. Guittonny-Philippe A, Masotti V, Höhener P, Boudenne J-L, Viglione J, Laffont-Schwob I (2014) Constructed wetlands to reduce metal pollution from industrial catchments in aquatic Mediterranean ecosystems: A review to overcome obstacles and suggest potential solutions. Environment International 64: 1-16. doi:https://doi.org/10.1016/j.envint.2013.11.016
- 11. Hassan I, Chowdhury SR, Prihartato PK, Razzak SA (2021) Wastewater Treatment Using Constructed Wetland: Current Trends and Future Potential. Processes 9 (11). doi:10.3390/pr9111917
- 12. He PJ, Shao LM, Guo HD, Li GJ, Lee DJ (2005) Nitrogen removal from landfill leachate using single or combined processes. Environmental technology 26 (4): 373-380. doi:10.1080/09593332608618553
- 13. Huang Y, Xiao L, Li F, Xiao M, Lin D, Long X, Wu Z (2018) Microbial Degradation of Pesticide Residues and an Emphasis on the Degradation of Cypermethrin and 3-phenoxy Benzoic Acid: A Review. Molecules 23 (9): 2313. doi:10.3390/molecules23092313
- 14. Jayaraj R, Megha P, Sreedev P (2016) Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol 9 (3-4): 90-100. doi:10.1515/intox-2016-0012
- 15. Jiang B, Xing Y, Zhang B, Cai R, Zhang D, Sun G (2018) Effective phytoremediation of low-level heavy metals by native macrophytes in a vanadium mining area, China. Environmental Science and Pollution Research 25 (31): 31272-31282. doi:10.1007/s11356-018-3069-9
- 16. Kalali, Ebadi, Rabbani Ar, Moghaddam S (2011) Response surface methodology approach to the optimization of oil hydrocarbon polluted soil remediation using enhanced soil washing. International Journal of Environmental Science and Technology 8. doi:10.1007/BF03326226
- 17. Khan S, Ahmad I, Shah MT, Rehman S, Khaliq A (2009) Use of constructed wetland for the removal of heavy metals from industrial wastewater. Journal of environmental management 90 (11): 3451-3457. doi:https://doi.org/10.1016/j.jenvman.2009.05.026
- 18. Kumar V, Singh J, Pathak VV, Ahmad S, Kothari R (2017) Experimental and kinetics study for phytoremediation of sugar mill effluent using water lettuce (Pistia stratiotes L.) and its end use for biogas production. 3 Biotech 7 (5):330. doi:10.1007/s13205-017-0963-7
- 19. Li X, Shen H, Zhao Y, Cao W, Hu C, Sun C (2019) Distribution and Potential Ecological Risk of Heavy Metals in Water, Sediments, and Aquatic Macrophytes: A Case Study of the Junction of Four Rivers in Linyi City, China. Int J Environ Res Public Health 16 (16). doi:10.3390/ijerph16162861
- 20. Lushchak VI, Matviishyn TM, Husak VV, Storey JM, Storey KB (2018) Pesticide toxicity: a mechanistic approach. EXCLI J 17: 1101-1136. doi:10.17179/excli2018-1710
- 21. Makhatova A, Mazhit B, Sarbassov Y, Meiramkulova K, Inglezakis VJ, Poulopoulos SG (2020) Effective photochemical treatment of a municipal solid waste landfill leachate. PLoS One 15 (9):e0239433e0239433. doi:10.1371/journal.pone.0239433
- 22. McCarty PL (2018) What is the Best Biological Process for Nitrogen Removal: When and Why? Environmental science & technology 52 (7):38353841. doi:10.1021/acs.est.7b05832
- 23. Miao L, Yang G, Tao T, Peng Y (2019) Recent advances in nitrogen removal from landfill leachate using biological treatments A review. Journal of environmental management 235: 178-185. doi:10.1016/j.jenvman.2019.01.057
- 24. Mohamad Thani NS, Mohd Ghazi R, Abdul Wahab IR, Mohd Amin MF, Hamzah Z, Nik Yusoff NR (2020) Optimization of Phytoremediation of Nickel by Alocasia puber Using Response Surface Methodology. Water 12 (10). doi:10.3390/w12102707
- 25. Mojiri A, Zhou JL, Ratnaweera H, Ohashi A, Ozaki N, Kindaichi T, Asakura H (2020) Treatment of landfill leachate with different techniques: an overview. Journal of Water Reuse and Desalination 11 (1): 66-96. doi:10.2166/wrd.2020.079
- 26. Mustafa HM, Hayder G (2021) Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Engineering Journal 12 (1): 355-365. doi:https://doi.org/10.1016/j.asej.2020.05.009
- 27. Nagarajan R, Thirumalaisamy S, Lakshumanan E (2012) Impact of leachate on groundwater pollution due to non-engineered municipal solid waste landfill sites of erode city, Tamil Nadu, India. Iranian J Environ Health Sci Eng 9 (1): 35-35. doi:10.1186/1735-2746-9-35
- 28. Nedjimi B (2021) Phytoremediation: a sustainable environmental technology for heavy metals decontamination. SN Applied Sciences 3 (3): 286. doi:10.1007/s42452-021-04301-4
- 29. Opitz J, Alte M, Bauer M, Peiffer S (2021) The Role of Macrophytes in Constructed Surface-flow Wetlands for Mine Water Treatment: A Review. Mine Water and the Environment 40 (3): 587-605. doi:10.1007/s10230-021-00779-x
- 30. Page V, Feller U (2015) Heavy Metals in Crop Plants: Transport and Redistribution Processes on the Whole Plant Level. Agronomy 5: 447-463. doi:10.3390/agronomy5030447
- 31. Pan Y, Zhang H, Li X, Xie Y (2016) Effects of sedimentation on soil physical and chemical properties and vegetation characteristics in sand dunes at the Southern Dongting Lake region, China. Sci Rep 6 (1): 36300. doi:10.1038/srep36300
- 32. Pan Z, Song C, Li L, Wang H, Pan Y, Wang C, Li J, Wang T, Feng X (2019) Membrane technology coupled with electrochemical advanced oxidation processes for organic wastewater treatment: Recent advances and future prospects. Chemical Engineering Journal 376: 120909. doi:https://doi.org/10.1016/j.cej.2019.01.188
- 33. Qasaimeh A, AlSharie H, Masoud T (2015) A Review on Constructed Wetlands Components and Heavy Metal Removal from Wastewater. Journal of Environmental Protection 06: 710-718. doi:10.4236/jep.2015.67064
- 34. Ribeiro VHV, Alencar BTB, dos Santos NMC, da Costa VAM, dos Santos JB, Francino DMT, Souza MdF, Silva DV (2019) Sensitivity of the macrophytes Pistia stratiotes and Eichhornia crassipes to hexazinone and dissipation of this pesticide in aquatic ecosystems. Ecotoxicology and environmental safety 168: 177-183. doi:https://doi.org/10.1016/j.ecoenv.2018.10.021
- 35. Selvi A, Rajasekar A, Theerthagiri J, Ananthaselvam A, Sathishkumar K, Madhavan J, Rahman PKSM (2019) Integrated Remediation Processes Toward Heavy Metal Removal/Recovery From Various Environments-A Review. 7. doi:10.3389/fenvs.2019.00066
- 36. Shanbehzadeh S, Vahid Dastjerdi M, Hassanzadeh A, Kiyanizadeh T (2014) Heavy Metals in Water and Sediment: A Case Study of Tembi River. J Environ Public Health 2014: 858720. doi:10.1155/2014/858720
- 37. Strobel BW, Borggaard OK, Hansen HCB, Andersen MK, Raulund-Rasmussen K (2005) Dissolved organic carbon and decreasing pH mobilize cadmium and copper in soil. European Journal of Soil Science 56 (2): 189-196. doi:https://doi.org/10.1111/j.1365-2389.2004.00661.x
- 38. Suman J, Uhlik O, Viktorova J, Macek T (2018) Phytoextraction of Heavy Metals: A Promising Tool for Clean-Up of Polluted Environment? Front Plant Sci 9: 1476-1476. doi:10.3389/fpls.2018.01476
- 39. Szymańska-Pulikowska A, Wdowczyk A (2021) Changes of a Landfill Leachate Toxicity as a Result of Treatment With Phragmites australis and Ceratophyllum demersum–A Case Study. 9 (392). doi:10.3389/fenvs.2021.739562
- 40. Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. International Journal of Chemical Engineering 2011: 939161. doi:10.1155/2011/939161
- 41. Taş N, Brandt BW, Braster M, van Breukelen BM, Röling WFM (2018) Subsurface landfill leachate contamination affects microbial metabolic potential and gene expression in the Banisveld aquifer. FEMS Microbiology Ecology 94 (10): fiy156. doi:10.1093/femsec/fiy156
- 42. Tatsi AA, Zouboulis AI, Matis KA, Samaras P (2003) Coagulation–flocculation pretreatment of sanitary landfill leachates. Chemosphere 53 (7): 737-744. doi:https://doi.org/10.1016/S0045-6535(03)00513-7
- 43. Ting WHT, Tan IAW, Salleh SF, Abdul Wahab N (2020) Ammoniacal nitrogen removal by Eichhornia crassipes-based phytoremediation: process optimization using response surface methodology. Applied Water Science 10 (3): 80. doi:10.1007/s13201-020-1163-x
- 44. To PK, Ma HT, Nguyen Hoang L, Nguyen TT (2020) Nitrate Removal from Waste-Water Using Silica Nanoparticles. Journal of Chemistry 2020:8861423. doi:10.1155/2020/8861423
- 45. Ugya AY (2015) The Efficiency of Lemna minor L. in the Phytoremediation of Romi Stream: A Case Study of Kaduna Refinery and Petrochemical Company Polluted Stream. Journal of Applied Biology and Biotechnology 3 (1): 011-014
- 46. Ugya AY (2021) The efficiency and antioxidant response of microalgae biofilm in the phycoremediation of wastewater resulting from tannery, textile, and dyeing activities. International Aquatic Research 13 (4): 289-300. doi:10.22034/iar.2021.1941208.1194
- 47. Ugya AY, Ajibade FO, Hua X (2021a) The efficiency of microalgae biofilm in the phycoremediation of water from River Kaduna. Journal of environmental management 295: 113109. doi:https://doi.org/10.1016/j.jenvman.2021.113109
- 48. Ugya AY, Hua X, Agamuthu P, Ma J (2019a) Molecular Approach to Uncover the Function of Bacteria in Petrochemical Refining Wastewater: A Mini Review. Applied Ecology and Environmental Research 17(2): 3645-3665. doi:10.15666/aeer/1702_36453665
- 49. Ugya AY, Hua X, Ma J (2019b) Biosorption of Cr3+ AND Pb2+ from Tannery Wastewater using Combined Fruit Waste. Applied Ecology and Environmental Research 17 (2): 1773-1787. doi:10.15666/aeer/1702_17731787
- 50. Ugya AY, Hua X, Ma J (2019c) Phytoremediation as a Tool for the Remediation of Wastewater Resulting from Dyeing Activities. Applied Ecology and Environmental Research 17(2): 3723-3735. doi:10.15666/aeer/1702_37233735
- 51. Ugya Y, Adamu., Hasan DuB, Tahir SM, Imam TS, Ari HA, Hua X (2021b) Microalgae biofilm cultured in nutrient-rich water as a tool for the phycoremediation of petroleum-contaminated water. International journal of phytoremediation: 1-9. doi:10.1080/15226514.2021.1882934
- 52. Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S (2009) Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experimental Botany 60(9): 26772688. doi:10.1093/jxb/erp119
- 53. Varma M, Gupta AK, Ghosal PS, Majumder A (2021) A review on performance of constructed wetlands in tropical and cold climate: Insights of mechanism, role of influencing factors, and system modification in low temperature. Science of The Total Environment 755: 142540. doi:https://doi.org/10.1016/j.scitotenv.2020.142540
- 54. Veiga M, Avanzi I, Hase L, Baltazar M, Perpetuo E, Guardani R, Gimenes L (2014) Microbial biodegradation of landfill leachates located in São Paulo state, Brazil. BMC Proc 8 (Suppl 4): P192-P192. doi:10.1186/1753-6561-8-S4-P192
- 55. Wojciechowska E (2013) Removal of persistent organic pollutants from landfill leachates treated in three constructed wetland systems. Water Science and Technology: A Journal of the International Association on Water Pollution Research 68 (5): 11641172. doi:10.2166/wst.2013.316
- 56. Wong MH, Li MM, Leung CK, Lan CY (1990) Decontamination of landfill leachate by soils with different textures. Biomed Environ Sci 3 (4): 429-442
- 57. Xiang Q, Nomura Y, Fukahori S, Mizuno T, Tanaka H, Fujiwara T (2019) Innovative Treatment of Organic Contaminants in Reverse Osmosis Concentrate from Water Reuse: a Mini Review. Current Pollution Reports 5(4): 294-307. doi:10.1007/s40726-019-00119-2
- 58. Xu Z-Y, Zeng G-M, Yang Z-H, Xiao Y, Cao M, Sun H-S, Ji L-L, Chen Y (2010) Biological treatment of landfill leachate with the integration of partial nitrification, anaerobic ammonium oxidation and heterotrophic denitrification. Bioresource Technology 101 (1): 79-86. doi:https://doi.org/10.1016/j.biortech.2009.07.082
- 59. Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z (2020) Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. 11. doi:10.3389/fpls.2020.00359
- 60. Zalesny JA, Zalesny RS, Jr., Wiese AH, Sexton B, Hall RB (2008) Sodium and chloride accumulation in leaf, woody, and root tissue of Populus after irrigation with landfill leachate. Environ Pollut 155 (1):72-80. doi:10.1016/j.envpol.2007.10.032
- 61. Zhang C, Yu Z-g, Zeng G-m, Jiang M, Yang Z-z, Cui F, Zhu M-y, Shen L-q, Hu L (2014) Effects of sediment geochemical properties on heavy metal bioavailability. Environment International 73: 270-281. doi:https://doi.org/10.1016/j.envint.2014.08.010
- 62. Zhang M-K, Liu Z-Y, Wang H (2010) Use of Single Extraction Methods to Predict Bioavailability of Heavy Metals in Polluted Soils to Rice. Communications in Soil Science and Plant Analysis 41 (7): 820-831. doi:10.1080/00103621003592341
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-35aac913-268e-48ea-b24a-58b73c15050a