Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 23, no. 3 | art. no. e209, 2023
Tytuł artykułu

Feasibility study on contact heating warm forming of 7075-T6 aluminum alloy

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
7075 aluminum alloy is becoming an ideal material for the manufacture of vehicle body parts due to the demands for energy-saving and lighter vehicles. To solve the problem that the strength of 7075-T6 aluminum alloy decreases due to over-aging after warm forming, contact heating warm forming (CHWF) technology was proposed in this work. Contact heating is a fast and efficient heating method that can make the blank reach the target temperature in a very short time. In this work, the effect of contact heating on the mechanical properties and microstructures of 7075-T6 aluminum alloy after warm forming and paint-baking (PB) was studied. It only took about 11.5 s to heat the 2 mm 7075 aluminum alloy sheet to 200 ℃ by contact heating, and the strength and the hardness of the formed parts could reach 94% and 92.5% of T6 condition, respectively. In contrast, the heating furnace needed 690 s to heat the sheet to 200 °C, and the strength and the hardness of the formed parts were 87% and 85.4% of T6 condition, respectively. Due to the fast heating rate of contact heating (17.5 ℃/s), the atoms and vacancies in the matrix did not have time to undergo diffusion and aggregation, so that the precipitates could not coarsen obviously. As a result, most of the η' precipitates in the T6 condition were retained. However, long-term heating in the furnace led to the transformation of η' precipitates into coarse η phase and the loss of strength and hardness.
Wydawca

Rocznik
Strony
art. no. e209, 2023
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
autor
  • Key Laboratory of Automobile Materials, Ministry of Education and School of Material Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, China
  • Key Laboratory of Automobile Materials, Ministry of Education and School of Material Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, China, zhangzq@jlu.edu.cn
  • Key Laboratory of Automobile Materials, Ministry of Education and School of Material Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, China
autor
  • Key Laboratory of Automobile Materials, Ministry of Education and School of Material Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, China
autor
  • Key Laboratory of Automobile Materials, Ministry of Education and School of Material Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, China
Bibliografia
  • 1. Xiao W, Wang B, Zheng K. An experimental and numerical investigation on the formability of AA7075 sheet in hot stamping condition. Int J Adv Manuf Tech. 2017;92:3299–309. https://doi. org/10.1007/s00170-017-0419-6.
  • 2. Yumi C, Jinwoo L, Sudhy S. Mechanical properties, springback, and formability of W-temper and peak aged 7075 aluminum alloy sheets: experiments and modeling. Int J Mech Sci. 2020;170:105344. https://doi.org/10.1016/j.ijmecsci.2019. 105344.
  • 3. Shabadi R, Suwas S, Kumar S, Roven HJ, Dwarkadasa ES. Tex- ture and formability studies on AA7020 Al alloy sheets. Mat Sci Eng A-struct. 2012;558:439–45. https://doi.org/10.1016/j.msea. 2012.08.024.
  • 4. Zhu L, Liu Z, Zhang Z. Investigation on strengthening of 7075 aluminum alloy sheet in a new hot stamping process with precooling. Int J Adv Manuf Tech. 2019;103:4739–46. https://doi. org/10.1007/s00170-019-03890-0.
  • 5. Huo W, Hou L, Zhang Y, Zhang J. Warm formability and post- forming microstructure/property of high-strength AA7075-t6 Al alloy. Mat Sci Eng A-struct. 2016;675:44–54. https://doi.org/10. 1016/j.msea.2016.08.054.
  • 6. Kumar M, Poletti C, Degischer HP. Precipitation kinetics in warm forming of AW7020 alloy. Mat Sci Eng A-struct. 2013;561:362– 70. https://doi.org/10.1016/j.msea.2012.10.031.
  • 7. Kumar M, Sotirov N, Chimani CM. Investigations on warm forming of AW7020-t6 alloy sheet. J Mater Process Tceh. 2014;214:1769–76. https:// doi. org/ 10. 1016/j. jmatp rotec. 2014. 03.024.
  • 8. Bagheriasl R, Worswick M, McKinley J, Simha H. An effec- tive warm forming process; numerical and experimental study. Int J Mater Form. 2010;3:219–22. https:// doi. org/ 10. 1007/ s12289-010-0746-8.
  • 9. Rasera JN, Daun KJ, Shi CJ, D’Souza M. Direct contact heating for hot forming die quenching. Appl Therm Eng. 2016;98:1165– 73. https://doi.org/10.1016/j.applthermaleng.2015.12.142.
  • 10. Zhang Z, Yu J, He D. Influence of contact solid-solution treat- ment on microstructures and mechanical properties of 7075 aluminum alloy. Mater Sci Eng A. 2019;743:500–3. https://doi.org/ 10.1016/j.msea.2018.11.108.
  • 11. Jaśkiewicz K, Skwarski M, Kaczyński P. Warm sheet metal forming of energy-absorbing elements made 7075 aluminum alloy in the hardened state T6. J Adv Manuf Technol. 2022;119:3157–79. https://doi.org/10.1007/s00170-021-08549-3.
  • 12. Evlen H, Kadi I, Yasar M. Effects of die corner radius and temperature on the formability of AA7075-t6 alloy. Acta Metall Sinengl. 2013;26:623–9. https://doi.org/10.1007/s40195-013-0129-5.
  • 13. Lee MY, Song SM, Kang CY. Effects of pre-treatment condi- tions on warm hydroformability of 7075 aluminum tubes. J Mater Process Tech. 2004;155:1337–43. https://doi.org/10.1016/i.jimat protec.2004.04.200.
  • 14. Kumar M. AW7075-t6 sheet for shock heat treatment forming process. T Nonferr Metal Soc. 2017;27:2156–62. https://doi.org/ 10.1016/s1003-6326(17)60241-3.
  • 15. Li XM, Starink MJ. Analysis of precipitation and dissolution in overaged 7xxx aluminium alloys using dsc. Mater Sci Forum. 2000;331–1:1071–6. https://doi.org/10.4028/www.scientific.net/ msf.331-337.1071.
  • 16. Oesterreicher JA, Tunes MA, Grabner F, Arnoldt A, Kremmer T, Pogatscher S, Schloegl CM. Warm-forming of pre-aged Al-Zn- Mg-Cu alloy sheet. Mater Design. 2020;193:108837. https://doi. org/10.1016/j.matdes.2020.108837.
  • 17. Li XM, Starink MJ. Dsc study on phase transitions and their correlation with properties of overaged Al-Zn-Mg-Cu alloys. J Mater Eng Perform. 2012;21:977–84. https://doi.org/10.1007/ s11665-011-9973-5.
  • 18. Su J, Zou Y, Chen K, Wang Z, Guan Q. Corrosion mechanism and characteristic of 7075–t6 aluminum alloy panel on airline aircraft. Chin J Mech Eng-En. 2013;49:0577–6686. https://doi. org/10.3901/jme.2013.08.091.
  • 19. Starink MJ, Wang SC. A model for the yield strength of overaged Al-Zn-Mg-Cu alloys. Acta Mater. 2003;51:5131–50. https://doi. org/10.1016/s1359-6454(03)00363-x.
  • 20. Ma K, Wen H, Hu T, Topping TD, Isheim D, Seidman DN, Lav- ernia EJ, Schoenung JM. Mechanical behavior and strengthening mechanisms in ultrafinegrain precipitation-strengthened aluminum alloy. Acta Mater. 2014;62:141–55. https://doi.org/10. 1016/j.actamat.2013.09.042.
  • 21. Zuo J, Hou L, Shi J, Cui H, Zhuang L, Zhang J. Effect of deformation induced precipitation on dynamic aging process and improvement of mechanical/corrosion properties AA7055 aluminum alloy. J Alloy Compd. 2017;708:1131–40. https://doi.org/10.1016/j.jallc om.2017.03.091.
  • 22. Zhang Z, Yu J, He D. Effects of contact body temperature and holding time on the microstructure and mechanical properties of 7075 aluminum alloy in contact solid solution treatment. J Alloy Compd. 2020;823:153919. https://doi.org/10.1016/j.jallcom.2020. 153919.
  • 23. Berg LK, GjØnne J, Hansen V, Li XZ, Knutson-Wedel M, Waterloo G, Schryvers D, Wallenberg LR. Gp-zones in Al–Zn–Mg alloys and their role in artificial aging. Acta Mater. 2001;49:3443– 51. https://doi.org/10.1016/s1359-6454(01)00251-8.
  • 24. Gang S, Cerezo A. Early-stage precipitation in Al–Zn–Mg-Cu alloy (7050). Acta Mater. 2004;52:4503–16. https://doi.org/10. 1016/j.actamat.2004.06.025.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-357983be-3bd8-43ce-b326-a1421adbf80f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.