Czasopismo
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Air quality in swimming pool facilities in consideration of the occurrence of volatile DBPs
Języki publikacji
Abstrakty
W wodach basenowych identyfikuje się liczne uboczne produkty dezynfekcji wody (DBP). Część z nich ze względu na dużą lotność (trihalometany, chloraminy), jest przenoszona z wody do powietrza i przy szeroko opisywanej szkodliwości, może stanowić poważne zagrożenie zdrowotne, związane z narażeniem inhalacyjnym na te związki dla osób przebywających w obiektach basenowych. O istniejącym zagrożeniu decydować będzie w znacznej mierze stężenie tych związków w powietrzu, czas narażenia i aktywność osób. Stężenia będą determinowane licznymi czynnikami użytkowania obiektów, w tym zastosowanym systemem wentylacji. Z uwagi na liczne doniesienia dotyczące złej jakości powietrza w wielu obiektach, w artykule dokonano szerokiego przeglądu literatury nt. występujących poziomów stężeń lotnych DBP (trihalometany i chloraminy) w powietrzu nad basenami oraz w innych pomieszczeniach na terenie obiektów basenowych. Zaprezentowano też stan prawny dotyczący wymogów prowadzenia pomiarów lotnych DBB i norm stężeń trihalometanów i chloramin w powietrzu. Przybliżono również tematykę dotyczącą znaczenia wentylacji i stosowanych rozwiązań w tym zakresie mających wpływ na kształtowanie jakości powietrza w tego typu obiektach.
Numerous by-products of water disinfection (DBPs) are identified in pool waters. Some of them, due to their high volatility (trihalomethanes, chloramines), are transferred from water to air and, with their widely reported harmfulness, can pose serious health risks associated with inhalation exposure to these compounds for people staying in pool facilities. The existing risk will be largely determined by the concentration of these compounds in the air, the duration of exposure and the activity of people. Concentrations will be determined by numerous factors of facility use, including the ventilation system used. Due to numerous reports of poor air quality in many facilities, this article conducts a broad review of the literature on the occurring levels of volatile DBPs (trihalomethanes and chloramines) concentrations in the air above swimming pools and in other rooms within swimming pool facilities. The legal status of the requirements for conducting measurements of volatile DBB and standards for the concentration of trihalomethanes and chloramines in the air was also presented. The importance of ventilation and the solutions used in this type of area affecting the air quality was also described.
Czasopismo
Rocznik
Tom
Strony
27--36
Opis fizyczny
Bibliogr. 101 poz., rys., tab.
Twórcy
autor
- Katedra Ochrony Powietrza, Wydział Inżynierii Środowiska i Energetyki, Politechnika Śląska, Centrum Nowych Technologii, Gliwice, magdalena.zak@polsl.pl
autor
- Katedra Ochrony Powietrza, Wydział Inżynierii Środowiska i Energetyki, Politechnika Śląska, Centrum Nowych Technologii, Gliwice
Bibliografia
- [1] Richardson S.D., Postigo C.: Drinking Water Disinfection By-products. In: Barceló, D. (eds) Emerging Organic Contaminants and Human Health. The Handbook of Environmental Chemistry, 2011, p. 20. Springer, Berlin https://doi.org/10.1007/698_2011_125
- [2] Catto C., Simard S., Charest-Tardif G., Rodriguez M., Tardif R.: Occurrence and spatial and temporal variations of disinfection by-products in the water and air of two indoor swimming pools. Int J Environ Res Public Health, 2012, 9(8), p. 2562-2586 doi: 10.3390/ijerph9082562
- [3] Chowdhury S., Alhooshani K., Karanfil T.: Disinfection byproducts in swimming pool: occurrences, implications and future needs. Water Res., 2014, 53, p. 68-109 doi: 10.1016/j.watres.2014.01.017
- [4] Teo T.L.L., Coleman H.M., Khan S.J.: Chemical contaminants in swimming pools: occurrence, implications and control. Environ Int., 2015, 76, p. 16-31 https://doi.org/10.1016/j.envint.2014.11.012
- [5] Pavon J.L.P., Martin S.H., Pinto C.G., Cordero B.M.: Determination of trihalomethanes in water samples: A review. Anal Chim Acta, 2008, 629, p. 6-23 doi: 10.1016/j.aca.2008.09.042
- [6] Blatchley E.R., Cheng M.: Reaction mechanism for chlorination of urea. Environ Sci Technol., 2010, 44(22), p. 8529-8534 doi: 10.1021/es102423u
- [7] Lian L., E Y., Li J., Blatchley E.R. 3rd: Volatile disinfection byproducts resulting from chlorination of uric acid: implications for swimming pools. Environ Sci Technol., 2014, 48, p. 3210-3217 https://doi.org/10.1021/es405402r
- [8] Keuten M.G.A., Schets F.M., Schijven J.F., Verberk J.Q.J.C., Van Dijk J.C.: Definition and quantification of initial anthropogenic pollutant release in swimming pools. Water Res., 2012, 46, p. 3682-3692 doi: 10.1016/j.watres.2012.04.012
- [9] Bottoni P., Bonadonna L., Chirico M., Caroli S., Záray G.: Emerging issues on degradation by-products deriving from personal care products and pharmaceuticals during disinfection processes of water used in swimming pools. Microchem J., 2014, 112, p. 13-16 https://doi.org/10.1016/j.microc.2013.09.001
- [10] Weng S., Sun P., Ben W., Huang Ch., Lee L.T., Blatchley E.R.: The presence of pharmaceuticals and personal care products in swimming pools. Environ Sci Technol Lett., 2014, 1(12), p. 495-498 https://doi.org/10.1021/ez5003133
- [11] Sharifan H., Klein D., Morse A.N.: UV filters interaction in the chlorinated swimmingpool, a new challenge for urbanization, a need for community scale investigations. Environ Res., 2016, 148, p. 273-276 doi: 10.1016/j.envres.2016.04.002
- [12] Richardson S.D: Disinfection by-products and other emerging contaminants in drinking water. Trends Anal Chem., 2003, 22(10), p. 666-684 doi:10.1016/S0165-9936(03)01003-3
- [13] Tardif R., Catto C., Haddad S., Simard S., Rodriguez M.: Assessment of air and water contamination by disinfection by-products at 41 indoor swimming pools. Environ Res J., 2016, 148, p. 411-420 doi: 10.1016/j.envres.2016.04.011
- [14] Sdougkou A., Kapsalaki K., Kozari A., Pantelaki I., Voutsa D.: Occurrence of disinfection by-products in swimming pools in the Area of Thessaloniki, Northern Greece. Assessment of multi-pathway exposure and risk. Molecules, 2021, 26(24), p. 7639 doi: 10.3390/molecules26247639
- [15] Chowdhury S.: Predicting human exposure and risk from chlorinated indoor swimming pool: a case study. Environmental Monitoring and Assessment, 2015, 187(8), p. 502 doi: 10.1007/s10661-015-4719-8
- [16] Villanueva C.M., Cantor K.P., Grimalt J.O., Malats N., Silverman D., Tardon A., Garcia C.R., Serra C., Carrato A,. Castano-Vinyals G., Marcos R., Rothman N., Real F.X., Dosemeci M., Kogevinas M.: Bladder cancer and exposure to water disinfection by products through ingestion, bathing, showering and swimming in pools. Am J Epidemiol., 2007, 165, p. 148-156 doi: 10.1093/aje/kwj364
- [17] Chen M.J., Lin C.H., Duh J.M., Chou W.S., Hsu H.T.: Development of a multipathway probabilistic health risk assessment model for swimmers exposed to chloroform in indor swimming pools. J Hazard Mater, 2011, 185(2-3), p. 1037-1044 doi: 10.1016/j.jhazmat.2010.10.011.
- [18] Lee J., Ha K.T., Zoh K.D.: Characteristics of trihalomethane (THM) production and associated health risk assessment in swimming pool waters treated with different disinfection methods. Sci Total Environ., 2009, 407, p. 1990-1997 doi: 10.1016/j.scitotenv.2008.11.021.
- [19] Marco E., Lourencetti C., Grimalt J.O., Gari M., Fernández P., Font-Ribera L., Villanueva C.M., Kogevinas M.: Influence of physical activity in the intake of trihalomethanes in indoor swimming pools. Environ Res., 2015, 140, p. 292-299 doi: 10.1016/j.envres.2015.04.005
- [20] Erdinger L., Kühn K.P., Kirsch F., Feldhues R., Fröbel T., Nohynek B., Gabrio T.: Pathways of trihalomethane uptake in swimming pools. Int J Hyg Environ Health., 2004, 207(6), p. 571-575 doi: 10.1078/1438-4639-00329
- [21] Lourencetti C., Grimalt J.O., Marco E., Fernandez P., Font-Ribera L., Villanueva C.M., Kogevinas M.: Trihalomethanes in chlorine and bromine disinfected swimming pools: air-water distributions and human exposure. Environ Int., 2012, 15, 45, p. 59-67 doi: 10.1016/j.envint.2012.03.009
- [22] WHO: Guidelines for Drinking-water Quality. 2017 https://www.who.int/publication-s/i/item/9789241549950
- [23] EPA (IRIS): Chloroform; CASRN 67-66-3. Washington, D.C.,1987 https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0025_summary.pdf
- [24] EPA (IRIS): Bromodichloromethane; CASRN 75-27-4. Washington, D.C.,1987 https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0213_summary.pdf
- [25] EPA (IRIS): Bromoform; CASRN 75-25-2. Washington, D.C., 1987 https://iris.epa.gov/static/pdfs/0214_summary.pdf
- [26] EPA (IRIS): Dibromochloromethane; CASRN 124-48-1. Washington, D.C., 1987 https://iris.epa.gov/static/pdfs/0222_summary.pdf
- [27] US EPA: Integrated Risk Information System (electronic data base). U.S. Environmental Protection Agency, Washington DC. 2009a http://www.epa.gov/iris
- [28] Hamidin N., Yu Q.J., Connell D.W.: Human health risk assessment of chlorinated disinfection by-products in drinking water using a probabilistic approach. Water Res., 2008, 42, p. 3263-3274 doi: 10.1016/j.watres.2008.02.029
- [29] Villanueva C.M., Cordier S., Font-Ribera L., Salas L.A., Levallois P.: Overview of disinfection by-products and associated health effects. Curr Environ Health Rep., 2015, 2(1), p. 107-115 doi: 10.1007/s40572-014-0032-x
- [30] Espín-Pérez A., Font-Ribera L., van Veldhoven K., Krauskopf J., Portengen L., Chadeau-Hyam M., Vermeulen R., Grimalt J.O., Villanueva C.M., Vineis P., Kogevinas M., Kleinjans J.C., de Kok T.M.: Blood transcriptional and microRNA responses to short-term exposure to disinfection by-products in a swimming pool. Environ Int., 2018, 110, p. 42-50 doi: 10.1016/j.envint.2017.10.003
- [31] Evlampidou I., Font-Ribera L., Rojas-Rueda D., Gracia-Lavedan E., Costet N., Pearce N., Vineis P., Jaakkola J.J.K., Delloye F., Makris K.C., Stephanou E.G., Kargaki S., Kozisek F., Sigsgaard T., Hansen B., Schullehner J.: Trihalomethanes in drinking water and bladder cancer burden in the European Union. Environ Health Perspect., 2020, 128(1), p. 1700 doi: 10.1289/EHP4495
- [32] Bove G.E.Jr, Rogerson P.A., Vena J.E.: Case control study of the geographic variability of exposure to disinfectant byproducts and risk for rectal cancer. Int J Health Geogr., 2007, 6, p. 18 doi: 10.1186/1476-072X-6-18
- [33] Graves C.G., Matanoski G.M., Tardiff R.G.: Weight of evidence for an association between adverse reproductive and developmental effects and exposure to disinfection by-products: a critical review. Regul Toxicol Pharmacol., 2001, 34(2), p. 103-124 doi: 10.1006/rtph.2001.1494
- [34] Nieuwenhuijsen M.J., Northstone K., Golding J. ALSPAC Study Team. Swimming and birth weight. Epidemiology, 2002, 13(6), p. 725-8 doi: 10.1097/00001648-200211000-00020
- [35] Grellier J., Bennett J., Patelarou E., Smith R.B., Toledano M.B., Rushton L., Briggs D.J., Nieuwenhuijsen M.J.: Exposure to disinfection by-products, fetal growth, and prematurity: a systematic review and meta-analysis. Epidemiology, 2010, 21(3), p. 300-313 doi: 10.1097/EDE.0b013e3181d61ffd
- [36] Villanueva C.M., Gracia-Lavedán E., Ibarluzea J., Santa Marina L., Ballester F., Llop S., Tardón A., Fernández M.F., Freire C., Goñi F., Basagaña X., Kogevinas M., Grimalt J.O., Sunyer J.: INMA (Infancia y Medio Ambiente) Project. Exposure to trihalomethanes through different water uses and birth weight, small for gestational age, and preterm delivery in Spain. Environ Health Perspect., 2011, 119(12), p. 1824-1830 doi: 10.1289/ehp.1002425
- [37] Vlaanderen J., van Veldhoven K., Font-Ribera L., Villanueva C.M., Chadeau-Hyam M., Portengen L., Grimalt J.O., Zwiener C., Heederik D., Zhang X., Vineis P., Kogevinas M., Vermeulen R.: Acute changes in serum immune markers due to swimming in a chlorinated pool. Environ Int., 2017, 105, p. 1-11 doi: 10.1016/j.envint.2017.04.009.
- [38] Guariglia S.R., Jenkins E.C., Chadman K.K., Wen,G.Y.: Chlorination byproducts induce gender specific autistic-like behaviors in CD-1 mice. Neurotoxicology, 2011, 32, p. 545-553 doi: 10.1016/j.neuro.2011.06.008
- [39] Manasfi T., Temime-Roussel B., Coulomb B., Vassalo L., Boudenne J-L.: Occurrence of brominated disinfection by-products in the air and water of chlorinated seawater swimming pools. Int J Hyg Environ Health, 2017, 220(3), p. 583-590 https://doi.org/10.1016/j.ijheh.2017.01.008
- [40] Kogevinas M., Villanueva C.M., Font-Ribera L., Liviac D., Bustamante M., Espinoza F., Nieuwenhuijsen M.J., Espinosa A., Fernandez P., DeMarini D.M., Grimalt J.O., Grummt T., Marcos R.: Genotoxic effects in swimmers exposed to disinfection by-products in indoor swimming pools. Environ Health Perspect., 2010, 118(11), p. 1531-1537 doi: 10.1289/ehp.1001959
- [41] Chowdhury S., Alhooshani K., Karanfil T.: Disinfection byproducts in swimming pool: occurrences, implications and future needs. Water Res., 2014, 53, p. 68-109 doi: 10.1016/j.watres.2014.01.017
- [42] Kanan A., Karanfil T.: Formation of disinfection by-products in indoor swimming pool water: The contribution from filling water natural organic matter and swimmer body fluids. Water Res., 2011, 45(2), p. 926-932 https://doi.org/10.1016/j.watres.2010.09.031.
- [43] Wastensson G., Eriksson K.: Inorganic chloramines: a critical review of the toxicological and epidemiological evidence as a basis for occupational exposure limit setting. Crit Rev Toxicol., 2020, 50(3), p. 219-271 doi: 10.1080/10408444.2020.1744514
- [44] Holzwarth G., Balmer R.G., Soni L.: The fate of chlorine and chloramines in cooling towers Henry’s law constants for flashoff. Water Res., 1984, 18(11), p. 1421-1427 https://doi.org/10.1016/0043-1354(84)90012-5
- [45] Fantuzzi G., Righi E., Predieri G., Giacobazzi P., Petra B., Aggazzotti G.: Airborne trichloramine (NCl(3)) levels and self-reported health symptoms in indoor swimming pool workers: dose-response relationships. J Expo Sci Environ Epidemiol, 2013, 23(1), p. 88-93 http://dx.doi.org/10.1038/jes.2012.56
- [46] Babu R.V., Cardenas V., Sharma G.: Acute respiratory distress syndrome from chlorine inhalation during a swimming pool accident: a case report and review of the literature. J Intensive Care Med., 2008, 23, p. 275-80 doi: 10.1177/0885066608318471
- [47] Voisin C., Sardella A., Marcucci F., Bernard A.: Infant swimming in chlorinated pools and the risks of bronchiolitis, asthma and allergy. Eur Respir J., 2010, 36(1), p. 41-47 doi: 10.1183/09031936.00118009
- [48] Löfstedt H., Westerlund J., Graff P., Bryngelsson I.L., Mölleby G., Olin A.C., Eriksson K., Westberg H.: Respiratory and Ocular Symptoms Among Employees at Swedish Indoor Swimming Pools. J Occup Environ Med., 2016, 58(12), p. 1190-1195 doi: 10.1097/JOM.0000000000000883
- [49] Żak M.: Narażenie na lotne DBP w atmosferze wewnętrznej obiektów basenowych. Instal 11/2022, s. 43-54; DOI 10.36119/15.2022.11.3
- [50] Aggazzotti G., Fantuzzi G., Righi E., Predieri G.: Environmental and biological monitoring of chloroform in indoor swimming pools. J Chromat., A, 710 (1), 1995, p. 181-190 https://doi.org/10.1016/0021-9673(95)00432-M
- [51] Aggazzotti G., Fantuzzi G., Righi E., Predieri G.: Blood and breath analyses as biological indicators of exposure to trihalomethanes in indoor swimming pools. Sci Total Environ., 1998, 217(1-2), p. 155-163 doi: 10.1016/s0048-9697(98)00174-0
- [52] Fantuzzi G., Righi E., Predieri G., Ceppelli G., Gobba F., Aggazzotti G.: Occupational exposure to trihalomethanes in indoor swimming pools. Sci Total Environ., 2001, 264(3), p. 257-265 doi: 10.1016/s0048-9697(00)00722-1
- [53] Caro J, Gallego M.: Alveolar air and urine analyses as biomarkers of exposure to trihalomethanes in an indoor swimming pool. Environ Sci Technol., 2008, 42(13), p. 5002-5007 doi: 10.1021/es800415p
- [54] Jacobs J.H., Spaan S., van Rooy G.B., Meliefste C., Zaat V.A., Rooyackers J.M., Heederik D.: Exposure to trichloramine and respiratory symptoms in indoor swimming pool workers. Eur Respir J., 2007, 29(4), p. 690-698 doi: 10.1183/09031936.00024706
- [55] Aprea M.: Disinfection of swimming pools with chlorine and derivatives: formation of organochlorinated and organobrominated compounds and exposure of pool personnel and swimmers. Natural Science, 2010, 02(02), p. 68-78 doi: 10.4236/ns.2010.22011
- [56] Silva Z.I., Rebelo M.H., Silva M.M., Alves A.M., Cabral Mda C., Almeida A.C., Aguiar F.R., de Oliveira A.L., Nogueira A.C., Pinhal H.R., Aguiar P.M., Cardoso A.S.: Trihalomethanes in Lisbon indoor swimming pools: occurrence, determining factors, and health risk classification. J Toxicol Environ Health A., 2012, 75(13-15), p. 878-892 doi: 10.1080/15287394.2012.690706
- [57] Fantuzzi G., Righi E., Predieri G., Giacobazzi P., Mastroianni K., Aggazzotti G.: Prevalence of ocular, respiratory and cutaneous symptoms in indoor swimming pool workers and exposure to disinfection by-products (DBPs). Int J Environ Res Public Health, 2010, 7(4), p. 1379-1391 doi: 10.3390/ijerph7041379
- [58] Richardson S.D., DeMarini D.M., Kogevinas M., Fernandez P., Marco E., Lourencetti C., Ballesté C., Heederik D., Meliefste K., McKague A.B., Marcos R., Font-Ribera L., Grimalt J.O., Villanueva C.M.: What’s in the pool? A comprehensive identification of disinfection by-products and assessment of mutagenicity of chlorinated and brominated swimming pool water. Environ Health Perspect., 2010, 118(11), p. 1523-1530 doi: 10.1289/ehp.1001965
- [59] Bessonneau V., Derbez M., Clément M., Thomas O.: Determinants of chlorination by-products in indoor swimming pools. Int J Hyg Environ Health., 2011, 215(1), p. 76-85 doi: 10.1016/j.ijheh.2011.07.009
- [60] Parrat J., Donzé G., Iseli C., Perret D., Tomicic C., Schenk O.: Assessment of occupational and public exposure to trichloramine in Swiss indoor swimming pools: a proposal for an occupational exposure limit. Ann Occup Hyg., 2012, 56(3), p. 264-277 doi: 10.1093/annhyg/mer125
- [61] Chen L., Dang B., Mueller C.A., Dunn K.H, Almaguer D., Ernst J.L., Otto C.S.: Investigation of employee symptoms at an indor waterpark. Health hazard evaluation report no. 2007-0163-3062. Atlanta, GA: US Department of Health and Human Services, CDC, National Institute for Occupational Safety and Health; 2008. https://www.cdc.gov/nceh/ehs/docs/investigation_of_employee_symptoms_at_an_indoor_waterpark.pdf
- [62] Font-Ribera L., Kogevinas M., Zock J.P., Gómez F.P., Barreiro E., Nieuwenhuijsen M.J., Fernandez P., Lourencetti C., Pérez-Olabarría M., Bustamante M., Marcos R., Grimalt J.O., Villanueva C.M.: Short-term changes in respiratory biomarkers after swimming in a chlorinated pool. Environ Health Perspect., 2010, 118(11), p. 1538-1544 doi: 10.1289/ehp.1001961
- [63] Thiriat N., Paulus H., Le Bot B., Glorennec P.: Exposure to inhaled THM: comparison of continuous and event-specific exposure assessment for epidemiologic purposes. Environ Int., 2009, 35(7), p. 1086-1089 doi: 10.1016/j.envint.2009.06.006
- [64] Nitter T.B., Kampel W., Svendsen K.H.; Aas B.: Comparison of trihalomethanes in the air of two indoor swimming pool facilities using different type of chlorination and different types of water. Water Supply, 2018, 18(4), p. 1350-1356 doi: 10.2166/WS.2017.201
- [65] Carter R., West N., Heitz A., Joll C.A.: An analytical method for the analysis of trihalomethanes in ambient air using solid-phase microextraction gas chromatography-mass spectrometry: An application to indor swimming pool complexes. Indoor Air, 2019, 29(3), p. 499-50 https://doi.org/10.1111/ina.12551
- [66] Westerlund J., Graff P., Bryngelsson I.L., Westberg H., Eriksson K., Löfstedt H.: Occupational exposure to trichloramine and trihalomethanes in swedish indoor swimming pools: evaluation of personal and stationary monitoring. Ann Occup Hyg., 2015, 59(8), p. 1074-1084 doi: 10.1093/annhyg/mev045
- [67] Westerlund J., Bryngelsson I.L., Löfstedt H., Eriksson K., Westberg H., Graff P.: Occupational exposure to trichloramine and trihalomethanes: adverse health effects among personnel in habilitation and rehabilitation swimming pools. J Occup Environ Hyg., 2019, 16(1), p. 78-88 doi: 10.1080/15459624.2018.1536825
- [68] Chen M.J., Duh J.M., Shie R.H., Weng J.H., Hsu H.T.: Dynamic real-time monitoring of chloroform in an indoor swimming pool air using open-path Fourier transform infrared spectroscopy. Indoor Air, 2016, 26(3), p. 457-467 doi: 10.1111/ina.12215
- [69] Lee L.T., Blatchley E.R III: Long-term monitoring of water and air quality at an indor pool facility during modifications of water treatment. Water, 2022, 14(3), p. 335 https://doi.org/10.3390/w14030335
- [70] Czajka K., Sziwa D., Latour T., Adamczewska M.: Badania zawartości trihalometanów w solance uzdrowiskowego basenu leczniczego i powietrza hali basenowej. Roczn. PZH, 2003, 54(1), p. 109-117
- [71] Słoniewicz I., Kaflak J.: Stężenie THM-ów i oksydantów w powietrzu hal basenowych, IV Sympozjum Naukowo-Techniczne Instalacje Basenowe, 2003, p. 307-315
- [72] Chu H., Nieuwenhuijsen M.J.: Distribution and determinants of trihalomethane concentrations in indoor swimming pools. Occup Environ Med., 2002, 59(4), p. 243-247 doi: 10.1136/oem.59.4.243
- [73] Héry M., Hecht G., Gerber J.M., Gendre J.C., Hubert G., Rebuffaud J.: Exposure to chloramines in the atmosphere of indor swimming pools. Ann. Occup. Hyg., 1995, 39(4), p. 427-439 doi: 10.1093/annhyg/39.4.427
- [74] Hsu H.T., Chen M.J., Lin C.H., Chou W.S., Chen J.H.: Chloroform in indoor swimming-pool air: monitoring and modeling coupled with the effects of environmental conditions and occupant activities. Water Res., 2009, 43(15), p. 3693-3704 doi: 10.1016/j.watres.2009.05.032
- [75] Weng S.C., Weaver W.A., Afifi M.Z., Blatchley T.N., Cramer J.S., Chen J., Blatchley E.R. 3rd.: Dynamics of gas-phase trichloramine (NCl3) in chlorinated, indoor swimming pool facilities. Indoor Air, 2011, 21(5), p. 391-399 doi: 10.1111/j.1600-0668.2011.00710.x
- [76] Kristensen G.H., Klausen M.M., Hansen V.A., Lauritsen F.R.: On-line monitoring of the dynamics of trihalomethane concentrations in a warm public swimming pool using an unsupervised membrane inlet mass spectrometry system with off-site real-time surveillance. Rapid Commun Mass Spectrom., 2010, 24(1), p. 30-34 doi: 10.1002/rcm.4360
- [77] Sa C., Boaventura R., Pereira I.: Analysis of haloacetic acids in water and air (aerosols) from indoor swimming pools using HS-SPME/GC/ECD. J Environ Sci Health, A, Tox Hazard Subst Environ Eng., 2012, 47(2), p. 176-183 doi: 0.1080/10934529.2012.640246
- [78] Nuckols J.R., Ashley D.L., Lyu C., Gordon S.M., Hinckley A.F., Singer P.: Influence of tap water quality and household water use activities on indoor air and internal dose levels of trihalomethanes. Environ Health Perspect., 2005, 113(7), p. 863-870 doi: 10.1289/ehp.7141
- [79] Panyakapo M., Soontornchai S., Paopuree P.: Cancer risk assessment from exposure to trihalomethanes in tap water and swimming pool water. J Environ Sci., 2008, 20(3), p. 372-378 doi: 10.1016/s1001-0742(08)60058-3
- [80] Villanueva C.M., Gagniere B., Monfort C., Nieuwenhuijsen M.J., Cordier S.: Sources of variability in levels and exposure to trihalomethanes. Environ Res., 2007, 103, p. 211-220 doi: 10.1016/j.envres.2006.11.001
- [81] Yang L., Chen X., She Q., Cao G., Liu Y., Chang V.W.-C., Tang Ch.Y.: Regulation, formation, exposure, and treatment of disinfection by-products (DBPs) in swimming pool waters: A critical review. Environ Int., 2018, 121(2), p. 1039-1057 doi: 10.1016/j.envint.2018.10.024
- [82] Rozporządzenie Ministra Zdrowia z dnia 9 listopada 2015 r. w sprawie wymagań, jakim powinna odpowiadać woda na pływalniach, poz. 2016 (Dz. U. z 2015 r., poz. 2016)
- [83] Bonvallot N., Glorennec P., Zmirou D.: Derivation of a toxicity reference value for nitrogen trichloride as a disinfection by-product. Regul Toxicol Pharmacol., 2010, 56(3), p. 357-364 doi: 10.1016/j.yrtph.2009.10.008
- [84] WorkSafe BC: Chloramines-safe work practices. 2014. Available at http://www.worksafebc.com/publications/health_and_safety/by_topic/assets/pdf/bk147.pdf
- [85] Parrat J.: Évaluation de L’exposition à la Trichloramine Atmosphérique des Maîtres Nageurs, Employés et Utilisateurs Publics des Piscines Couvertes des Cantons de Fribourg, Neuchâtel et du Jura; Laboratoire intercantonal de santé au travail-LIST: Peseux, p. 76, Switzerland, 2008; https://www.bag.admin.ch › chemikalien-alltag
- [86] Boudenne J.-L.: Évaluation des risques sanitaires liés aux piscines Partie 1: Piscines réglementées. Technical report, AFSSET, 2010 available at https://www.researchgate.net/publication/282672748
- [87] Massin N., Hecht G., Ambroise D., Héry M., Toamain J.P., Hubert G., Dorotte M., Bianchi B.: Respiratory symptoms and bronchial responsiveness among cleaning and disinfecting workers in the food industry. Occup Environ Med., 2007, 64(2), p. 75-81 doi: 10.1136/oem.2005.026203
- [88] Jacobs J.H., Spaan S., van Rooy G.B., Meliefste C., Zaat V.A., Rooyackers J.M., Heederik D.: Exposure to trichloramine and respiratory symptoms in indoor swimming pool workers. Eur Respir J., 2007, 29(4), p. 690-698 doi: 10.1183/09031936.00024706
- [89] Lévesque B., Duchesne J.F., Gingras S., Lavoie R., Prud’Homme D., Bernard E., Boulet L.P., Ernst P.: The determinants of prevalence of health complaints among young competitive swimmers. Int Arch Occup Environ Health., 2006, 80(1), p. 32-39 doi: 10.1007/s00420-006-0100-0
- [90] Boudenne J.-L.: Évaluation des risques sanitaires liés aux piscines Partie II: bains à remous. ANSES, 2015 doi: 10.13140/RG.2.1.2182.7043 available at: https://www.researchgate.net/publication/282245336
- [91] Thoumelin P., Monin E., Armandet D., Julien M., Massart B., Vasseur C., Pillon A., Zilliox M., Balducci I., Bergeret A.: Troubles d’irritation respiratoire chez les travailleurs despiscines; INRS, Documents pour le médecin du travail, 2005, 101, p. 43-61 available at: https://www.inrs.fr/media.html?refINR-S=TF%20138
- [92] Shah M.M.: Methods for calculation of evaporation from swimming pools and other water surfaces. ASHRAE Transactions, 2014, 120(2), p. 3-17
- [93] Lebon M., Fellouah H., Galanis N., Limane A., Guerfala N.: Numerical analysis and field measurements of the airflow patterns and thermal comfort in an indoor swimming pool: a case study. Energ Effic., 2017, 10(3), p. 527-548 doi: 10.1007/s12053-016-9469-0
- [94] Nitter T.B., Svendsen K.V.H.: Modelling the concentration of chloroform in the air of a Norwegian swimming pool facility - A repeated measures study. Sci Total Environ., 2019, 664, p.1039-1044 doi: 10.1016/j.scitotenv.2019.02.113
- [95] Baxter R.C.: Designing for IAQ in natatoriums. ASHRAE Journal, 2012, 54, p. 24-32
- [96] Cavestri R.C., Seeger-Clevenger, D.: Chemical off-gassing from indoor swimming pools. ASHRAE Transactions, 2009, 115, p. 502-512 https://www.nxtbook.com/nxtbooks/ashrae/ashraejournal_201204/index.php?startid=32#/p/32]
- [97] Piotrowska A.: Wpływ sposobu uzdatniania wody i układu wentylacyjnego na obecność THM-ów w środowisku basenów krytych. Praca doktorska. Instytut Inżynierii Środowiska, Wydział Budownictwa i Inżynierii Środowiska, Politechnika Poznańska, 2019
- [98] Ratajczak K.: Badanie struktury układu wentylacyjnego w aspekcie energooszczędności dla krytych basenów kąpielowych. Praca doktorska Instytut Inżynierii Środowiska, Wydział Budownictwa i Inżynierii Środowiska, Politechnika Poznańska, 2015
- [99] Ratajczak K., Piotrowska A.: Disinfection by-products in swimming pool water and possibilities of limiting their impact on health of swimmers. Geomatics and Environmental Engineering, 2019, 13(3), p. 71-92 https://doi.org/10.7494/geom.2019.13.3.71
- [100] Lévesque B., Vézina .L, Gauvin D., Leroux P.: Investigation of air quality problems in an indoor swimming pool: A case study. Ann Occup Hyg., 2015, 59(8), p. 1085-1089 doi: 10.1093/annhyg/mev038.
- [101] Schmalz C., Frimmel F.H., Zwiener C.: Trichloramine in swimming pools - Formation and mass transfer, Water Res., 2011, 45(8), p. 2681-2690, https://doi.org/10.1016/j.watres.2011.02.024
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-35415b92-a6a1-4060-92c9-39e0398ecd91