Warianty tytułu
Interfejs energoelektroniczny dla miejskich podstacji trakcyjnych DC - rozwiązania i funkcjonalność
Języki publikacji
Abstrakty
This paper focuses on extending an urban DC traction substation functionality by means of an additional power converter interface (PCI). In particular, by enabling bidirectional energy exchange between LV DC traction grid, AC grid and V2G chargers. Among other things, the presented material compares general attributes of the most promising DC/DC converters that can be used in a PCI, meet the requirements of galvanic isolation and can operate in a wide voltage range. Based on the literature, the application suitability of typical PCI structures and isolated DC/DC converters was made. In addition, the principles of power flow in the power converter interface that connects an AC grid, DC traction grid, V2G chargers and PV source are discussed.
Niniejszy artykuł koncentruje się na zagadnieniach związanych z rozszerzeniem funkcjonalności miejskich podstacji trakcyjnych prądu stałego za pomocą dodatkowych interfejsów energoelektronicznych, w szczególności umożliwiających dwukierunkową wymianę energii między trakcją, siecią i ładowarkami V2G. W prezentowanym materiale porównano między innymi ogólne atrybuty połączeń przetwornic DC/DC i aktywnych prostowników rewersyjnych, spełniających wymagania separacji galwanicznej i pracy w pełnym zakresie zmian napięcia trakcyjnego. Na podstawie literatury scharakteryzowano również przydatność typowych izolowanych przetwornic DC/DC. Ponadto omówiono zasady przepływu mocy w interfejsie łączącym sieć AC, trakcję DC, ładowarkę V2G i źródło PV.
Czasopismo
Rocznik
Tom
Strony
134--140
Opis fizyczny
Bibliogr. 63 poz., rys., tab.
Twórcy
autor
- Gdańsk University of Technology, Department of Power Electronics and Electrical Machines, Narutowicza 11/12, 80-233 Gdańsk, Poland, mykola.lukianov@pg.edu.pl
autor
- Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute, Department Of Electronic Devices and Systems, Peremohy Ave 37, 03056 Kyiv, Ukraine, verbytskyi.ievgen@gmail.com
autor
- Gdynia Maritime University, Faculty of Electrical Engineering, Morska St. 81-87, 81-225 Gdynia, Poland, n.strzelecka@we.umg.edu.pl
autor
- Gdańsk University of Technology, Department of Power Electronics and Electrical Machines, Narutowicza 11/12, 80-233 Gdańsk, Poland, ryszard.strzelecki@pg.edu.pl
Bibliografia
- [1] United Stated Environmental Protection Agency, "Power Plants and Neighboring Communities", U.S. Census Bureau’s American Community Survey (ACS) 2014-2018, USA, 2022. Accessed: Feb. 8, 2023.[Online]. Available: https://www.epa.gov/airmarkets/power-plants-and-neighboring-communities
- [2] M. S afayatullah, M. T. Elrais, S. Ghosh, R. Rezaii and I. Batarseh, "A Comprehensive Review of Power Converter Topologies and Control Methods for Electric Vehicle Fast Charging Applications," in IEEE Access, vol. 10, pp. 40753- 40793, 2022, doi: 10.1109/ACCESS.2022.3166935.
- [3] P. Cheng, H. Kong, J. Ma and L. Jia, "Overview of resilient traction power supply systems in railways with interconnected microgrid," in CSEE Journal of Power and Energy Systems, vol. 7, no. 5, pp. 1122-1132, Sept. 2021, doi: 10.17775/CSEEJPES.2020.02110.
- [4] R. Martins, P. Musilek, H. C. Hesse, J. Jungbauer, T. Vorbuchner and A. Jossen, "Linear Battery Aging Model for Industrial Peak Shaving Applications," 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Palermo, Italy, 2018, pp. 1-6, doi: 10.1109/EEEIC.2018.8494584.
- [5] L. Streit and J. Talla, "Energy storage savings depended on recuperation ratio in traction," 2016 ELEKTRO, Strbske Pleso, Slovakia, 2016, pp. 370-373, doi: 10.1109/ELEKTRO.2016.7512099.
- [6] Jisheng Hu, Yukun Zhao and Xiaojing Liu, "The design of regeneration braking system in light rail vehicle using energy-storage Ultra-capacitor," 2008 IEEE Vehicle Power and Propulsion Conference, Harbin, 2008, pp. 1-5, doi: 10.1109/VPPC.2008.4677708.
- [7] ABB Sp. z o.o, "ABB Electrification – Distribution Solutions, DC Traction Power Supply", ABB, Poland, 2020. Accessed: Feb. 8, 2023. [Online].Available:https://library.e.abb.com/public/98a2116cd43 64d8e9ebd168cabd44c48/ABB_DC%20TPS_EN_V1_16_9_20 20-05-07_Handout.pdf
- [8] Electrically propelled road vehicles - Safety specifications. Part 3 - Protection of persons against electric shock, International Standard ISO 6469-3, December 2011. [Online]. Available: https://cdn.standards.iteh.ai/samples/45479/4dd589196f204a2 1a2ae18c1638e8197/ISO-6469-3-2011.pdf
- [9] F. Hao, G. Zhang, J. Chen, Z. Liu, D. Xu and Y. Wang, "Optimal Voltage Regulation and Power Sharing in Traction Power Systems With Reversible Converters," in IEEE Transactions on Power Systems, vol. 35, no. 4, pp. 2726-2735, July 2020, doi: 10.1109/TPWRS.2020.2968108.
- [10] T. U. Solanke et al., "Optimal design of EV aggregator for real-time peak load shaving and valley filling," 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, 2020, pp. 1-5, doi: 10.1109/PEDES49360.2020.9379637.
- [11] F. Xue, R. Yu and A. Q. Huang, "A 98.3% Efficient GaN Isolated Bidirectional DC–DC Converter for DC Microgrid Energy Storage System Applications," in IEEE Transactions on Industrial Electronics vol. 64, no. 11, pp. 9094-9103, Nov. 2017, doi:10.1109/TIE.2017.2686307.
- [12] A. K. Bhattacharjee and I. Batarseh, "Optimum Hybrid Modulation for Improvement of Efficiency Over Wide Operating Range for Triple-Phase-Shift Dual-Active-Bridge Converter," in IEEE Transactions on Power Electronics, vol. 35, no. 5, pp. 4804-4818, May 2020, doi: 10.1109/TPEL.2019.2943392.
- [13] D. Chen, J. Deng, W. Wang and Z. Wang, "A Dual-Transformer-Based Hybrid Dual Active Bridge Converter for Plug-in Electric Vehicle Charging to Cope With Wide Load Voltages," in IEEE Transactions on Industrial Electronics, vol. 70, no. 2, pp. 1444-1454, Feb. 2023, doi: 10.1109/TIE.2022.3158013.
- [14] F. Krismer and J. W. Kolar, "Accurate Power Loss Model Derivation of a High-Current Dual Active Bridge Converter for an Automotive Application," in IEEE Transactions on Industrial Electronics, vol. 57, no. 3, pp. 881-891, March 2010, doi: 10.1109/TIE.2009.2025284.
- [15] S. A. Assadi, H. Matsumoto, M. Moshirvaziri, M. Nasr, M. S. Zaman and O. Trescases, "Active Saturation Mitigation in High-Density Dual-Active-Bridge DC–DC Converter for On-Board EV Charger Applications," in IEEE Transactions on Power Electronics, vol. 35, no. 4, pp. 4376-4387, April 2020, doi: 10.1109/TPEL.2019.2939301.
- [16] H. Akagi, S. Kinouchi and Y. Miyazaki, "Bidirectional isolated dual-active-bridge (DAB) DC-DC converters using 1.2-kV 400- A SiC-MOSFET dual modules," in CPSS Transactions on Power Electronics and Applications, vol. 1, no. 1, pp. 33-40, Dec. 2016, doi: 10.24295/CPSSTPEA.2016.00004.
- [17] Y. Park, S. Chakraborty and A. Khaligh, "DAB Converter for EV Onboard Chargers Using Bare-Die SiC MOSFETs and Leakage-Integrated Planar Transformer," in IEEE Transactions on Transportation Electrification, vol. 8, no. 1, pp. 209-224, March 2022, doi: 10.1109/TTE.2021.3121172.
- [18] A. Rodríguez, A. Vázquez, D. G. Lamar, M. M. Hernando and J. Sebastián, "Different Purpose Design Strategies and Techniques to Improve the Performance of a Dual Active Bridge With Phase-Shift Control," in IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 790-804, Feb. 2015, doi: 10.1109/TPEL.2014.2309853.
- [19] F. Krismer and J. W. Kolar, "Efficiency-Optimized High-Current Dual Active Bridge Converter for Automotive Applications," in IEEE Transactions on Industrial Electronics, vol. 59, no. 7, pp. 2745-2760, July 2012, doi: 10.1109/TIE.2011.2112312.
- [20] Y. -W. Cho, W. -J. Cha, J. -M. Kwon and B. -H. Kwon, "High-Efficiency Bidirectional DAB Inverter Using a Novel Hybrid Modulation for Stand-Alone Power Generating System With Low Input Voltage," in IEEE Transactions on Power Electronics, vol. 31, no. 6, pp. 4138-4147, June 2016, doi: 10.1109/TPEL.2015.2476336.
- [21] Y. Yan, H. Bai, A. Foote and W. Wang, "Securing Full-Power-Range Zero-Voltage Switching in Both Steady-State and Transient Operations for a Dual-Active-Bridge-Based Bidirectional Electric Vehicle Charger," in IEEE Transactions on Power Electronics, vol. 35, no. 7, pp. 7506-7519, July 2020, doi: 10.1109/TPEL.2019.2955896.
- [22] G. G. Oggier, G. O. GarcÍa and A. R. Oliva, "Switching Control Strategy to Minimize Dual Active Bridge Converter Losses," in IEEE Transactions on Power Electronics, vol. 24, no. 7, pp. 1826-1838, July 2009, doi: 10.1109/TPEL.2009.2020902.
- [23] D. Sha, F. You and X. Wang, "A High-Efficiency Current-Fed Semi-Dual-Active Bridge DC–DC Converter for Low Input Voltage Applications," in IEEE Transactions on Industrial Electronics, vol. 63, no. 4, pp. 2155-2164, April 2016, doi: 10.1109/TIE.2015.2506625.
- [24] X. Gao, H. Wu and Y. Xing, "A Multioutput LLC Resonant Converter With Semi-Active Rectifiers," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 4, pp. 1819-1827, Dec. 2017, doi: 10.1109/JESTPE.2017.2719683.
- [25] P. Ma, D. Sha and K. Song, "A Single-Stage Semi Dual-Active-Bridge AC–DC Converter With Seamless Mode Transition and Wide Soft-Switching Range," in IEEE Transactions on Industrial Electronics, vol. 70, no. 2, pp. 1387- 1397, Feb. 2023, doi: 10.1109/TIE.2022.3156172.
- [26] F. Wu, Z. Wang and S. Luo, "Buck–Boost Three-Level Semi-Dual-Bridge Resonant Isolated DC–DC Converter," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 5, pp. 5986-5995, Oct. 2021, doi: 10.1109/JESTPE.2020.3041094.
- [27] D. Sha, J. Zhang and Y. Xu, "Improved Boundary Operation for Voltage-Fed Semi-DAB With ZVS Achievement and Nonactive Power Reduction," in IEEE Transactions on Industrial Electronics, vol. 64, no. 8, pp. 6179-6189, Aug. 2017, doi: 10.1109/TIE.2017.2682026.
- [28] D. Sha, J. Zhang and T. Sun, "Multimode Control Strategy for SiC mosfets Based Semi-Dual Active Bridge DC–DC Converter," in IEEE Transactions on Power Electronics, vol. 34, no. 6, pp. 5476-5486, June 2019, doi: 10.1109/TPEL.2018.2866700.
- [29] F. Hoffmann, J. -L. Lafrenz, M. Liserre and N. Vazquez, "Multiwinding based Semi-Dual Active Bridge Converter," 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 2020, pp. 2142-2149, doi: 10.1109/APEC39645.2020.9124525.
- [30] M. A. H. Rafi and J. Bauman, "Optimal Control of Semi-Dual Active Bridge DC/DC Converter With Wide Voltage Gain in a Fast-Charging Station With Battery Energy Storage," in IEEE Transactions on Transportation Electrification, vol. 8, no. 3, pp. 3164-3176, Sept. 2022, doi: 10.1109/TTE.2022.3170737.
- [31] D. Sha, D. Chen, S. Khan and Z. Guo, "Voltage-Fed Three-Phase Semi-Dual Active Bridge DC–DC Converter Utilizing Varying Operating Modes With High Conversion Efficiency," in IEEE Transactions on Power Electronics, vol. 34, no. 10, pp. 9447-9458, Oct. 2019, doi: 10.1109/TPEL.2018.2890340.
- [32] Z. Wang and H. Li, "A Soft Switching Three-phase Current-fed Bidirectional DC-DC Converter With High Efficiency Over a Wide Input Voltage Range," in IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 669-684, Feb. 2012, doi: 10.1109/TPEL.2011.2160284.
- [33] H. Chen, S. Ouyang, J. Liu and X. Li, "An Asymmetrical Phase-Shift Scheme of Three-Phase Dual Active Bridge With Minimum Current Root-Mean-Square Value Control," in IEEE Transactions on Power Electronics, vol. 37, no. 12, pp. 14343- 14361, Dec. 2022, doi: 10.1109/TPEL.2022.3192781.
- [34] J. Hu, Z. Yang, S. Cui and R. W. De Doncker, "Closed-Form Asymmetrical Duty-Cycle Control to Extend the Soft-Switching Range of Three-Phase Dual-Active-Bridge Converters," in IEEE Transactions on Power Electronics, vol. 36, no. 8, pp. 9609- 9622, Aug. 2021, doi: 10.1109/TPEL.2021.3055369.
- [35] L. M. Cúnico, Z. M. Alves and A. L. Kirsten, "Efficiency-Optimized Modulation Scheme for Three-Phase Dual-Active-Bridge DC–DC Converter," in IEEE Transactions on Industrial Electronics, vol. 68, no. 7, pp. 5955-5965, July 2021, doi: 10.1109/TIE.2020.2992961.
- [36] J. Huang, Z. Li, L. Shi, Y. Wang and J. Zhu, "Optimized Modulation and Dynamic Control of a Three-Phase Dual Active Bridge Converter With Variable Duty Cycles," in IEEE Transactions on Power Electronics, vol. 34, no. 3, pp. 2856- 2873, March 2019, doi: 10.1109/TPEL.2018.2842021.
- [37] N. H. Baars, J. Everts, C. G. E. Wijnands and E. A. Lomonova, "Performance Evaluation of a Three-Phase Dual Active Bridge DC–DC Converter With Different Transformer Winding Configurations," in IEEE Transactions on Power Electronics, vol. 31, no. 10, pp. 6814-6823, Oct. 2016, doi: 10.1109/TPEL.2015.2506703.
- [38] L. M. Cúnico and A. L. Kirsten, "Single-Phase Operating Modes for DC–DC Three-Phase Dual-Active-Bridge With YΔ Transformer," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 4, pp. 4845-4853, Aug. 2022, doi: 10.1109/JESTPE.2022.3142686.
- [39] D. Chen, D. Sha and T. Sun, "Three Phase Current-Fed Semi Dual Active Bridge DC–DC Converter With Hybrid Operating Mode Control," in IEEE Transactions on Power Electronics, vol. 35, no. 2, pp. 1649-1658, Feb. 2020, doi: 10.1109/TPEL.2019.2919530.
- [40] G. Waltrich, M. A. M. Hendrix and J. L. Duarte, "Three-Phase Bidirectional DC/DC Converter With Six Inverter Legs in Parallel for EV Applications," in IEEE Transactions on Industrial Electronics, vol. 63, no. 3, pp. 1372-1384, March 2016, doi: 10.1109/TIE.2015.2494001.
- [41] C. Zhao, S. D. Round and J. W. Kolar, "An Isolated Three-Port Bidirectional DC-DC Converter With Decoupled Power Flow Management," in IEEE Transactions on Power Electronics, vol. 23, no. 5, pp. 2443-2453, Sept. 2008, doi: 10.1109/TPEL.2008.2002056.
- [42] J. Li, Q. Luo, T. Luo, D. Mou and M. Liserre, "Efficiency Optimization Scheme for Isolated Triple Active Bridge DC–DC Converter With Full Soft-Switching and Minimized RMS Current," in IEEE Transactions on Power Electronics, vol. 37, no. 8, pp. 9114-9128, Aug. 2022, doi: 10.1109/TPEL.2022.3157443.
- [43] S. Dey, A. Mallik and A. Akturk, "Investigation of ZVS Criteria and Optimization of Switching Loss in a Triple Active Bridge Converter Using Penta-Phase-Shift Modulation," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 6, pp. 7014-7028, Dec. 2022, doi: 10.1109/JESTPE.2022.3191987.
- [44] H. Li, Z. Zhang, S. Wang, J. Tang, X. Ren and Q. Chen, "A 300-kHz 6.6-kW SiC Bidirectional LLC Onboard Charger," in IEEE Transactions on Industrial Electronics, vol. 67, no. 2, pp. 1435-1445, Feb. 2020, doi: 10.1109/TIE.2019.2910048.
- [45] P. He, A. Mallik, A. Sankar and A. Khaligh, "Design of a 1- MHz High-Efficiency High-Power-Density Bidirectional GaN-Based CLLC Converter for Electric Vehicles," in IEEE Transactions on Vehicular Technology, vol. 68, no. 1, pp. 213- 223, Jan. 2019, doi: 10.1109/TVT.2018.2881276.
- [46] S. -H. Ryu, D. -H. Kim, M. -J. Kim, J. -S. Kim and B. -K. Lee, "Adjustable Frequency–Duty-Cycle Hybrid Control Strategy for Full-Bridge Series Resonant Converters in Electric Vehicle Chargers," in IEEE Transactions on Industrial Electronics, vol. 61, no. 10, pp. 5354-5362, Oct. 2014, doi: 10.1109/TIE.2014.2300036.
- [47] B. Li, F. C. Lee, Q. Li and Z. Liu, "Bi-directional on-board charger architecture and control for achieving ultra-high efficiency with wide battery voltage range," 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 2017, pp. 3688-3694, doi: 10.1109/APEC.2017.7931228.
- [48] Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen and J. -S. Lai, "Design of Bidirectional DC–DC Resonant Converter for Vehicle-to-Grid (V2G) Applications," in IEEE Transactions on Transportation Electrification, vol. 1, no. 3, pp. 232-244, Oct. 2015, doi: 10.1109/TTE.2015.2476035.
- [49] L. A. D. Ta, N. D. Dao and D. -C. Lee, "High-Efficiency Hybrid LLC Resonant Converter for On-Board Chargers of Plug-In Electric Vehicles," in IEEE Transactions on Power Electronics, vol. 35, no. 8, pp. 8324-8334, Aug. 2020, doi: 10.1109/TPEL.2020.2968084.
- [50] C. Bai, B. Han, B. -H. Kwon and M. Kim, "Highly Efficient Bidirectional Series-Resonant DC/DC Converter Over Wide Range of Battery Voltages," in IEEE Transactions on Power Electronics, vol. 35, no. 4, pp. 3636-3650, April 2020, doi: 10.1109/TPEL.2019.2933408.
- [51] G. Liu, Y. Jang, M. M. Jovanović and J. Q. Zhang, "Implementation of a 3.3-kW DC–DC Converter for EV On-Board Charger Employing the Series-Resonant Converter With Reduced-Frequency-Range Control," in IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4168-4184, June 2017, doi: 10.1109/TPEL.2016.2598173.
- [52] H. Haga and F. Kurokawa, "Modulation Method of a Full-Bridge Three-Level LLC Resonant Converter for Battery Charger of Electrical Vehicles," in IEEE Transactions on Power Electronics, vol. 32, no. 4, pp. 2498-2507, April 2017, doi: 10.1109/TPEL.2016.2570800.
- [53] Texas Instruments, "Bidirectional, Dual Active Bridge Reference Design for Level 3 Electric Vehicle Charging Stations", Design Guide: TIDA-010054, June 2019 [Revised July 2022]. Accessed: Feb. 8, 2023. [Online]. Available: https://www.ti.com/tool/TIDA-010054
- [54] B. Whitaker et al., "A High-Density, High-Efficiency, Isolated On-Board Vehicle Battery Charger Utilizing Silicon Carbide Power Devices," in IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2606-2617, May 2014, doi: 10.1109/TPEL.2013.2279950.
- [55] R. Huang and S. K. Mazumder, "A Soft Switching Scheme for Multiphase DC/Pulsating-DC Converter for Three-Phase High-Frequency-Link Pulsewidth Modulation (PWM) Inverter," in IEEE Transactions on Power Electronics, vol. 25, no. 7, pp. 1761-1774, July 2010, doi: 10.1109/TPEL.2010.2042180.
- [56] D. S. Oliveira and I. Barbi, "A three-phase ZVS PWM DC/DC converter with asymmetrical duty cycle associated with a three-phase version of the hybridge rectifier," in IEEE Transactions on Power Electronics, vol. 20, no. 2, pp. 354-360, March 2005, doi: 10.1109/TPEL.2004.842996.
- [57] M. C. Mira, Z. Zhang, A. Knott and M. A. E. Andersen, "Analysis, Design, Modeling, and Control of an Interleaved-Boost Full-Bridge Three-Port Converter for Hybrid Renewable Energy Systems," in IEEE Transactions on Power Electronics, vol. 32, no. 2, pp. 1138-1155, Feb. 2017, doi: 10.1109/TPEL.2016.2549015.
- [58] S. Ikeda and F. Kurokawa, "Isolated and wide input ranged boost full bridge DC-DC converter with low loss active snubber," 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 2017, pp. 2213-2218, doi: 10.1109/ECCE.2017.8096433.
- [59] D. Liu, Y. Wang, F. Deng and Z. Chen, "Triple-Phase-Shift Modulation Strategy for Diode-Clamped Full-Bridge Three-Level Isolated DC/DC Converter," in IEEE Access, vol. 8, pp. 2750-2759, 2020, doi: 10.1109/ACCESS.2019.2961788.
- [60] A. Aldik, A. T. Al-Awami, E. Sortomme, A. M. Muqbel and M. Shahidehpour, "A Planning Model for Electric Vehicle Aggregators Providing Ancillary Services," in IEEE Access, vol. 6, pp. 70685-70697, 2018, doi: 10.1109/ACCESS.2018.2880443.
- [61] V. Monteiro, J. G. Pinto and J. L. Afonso, "Operation Modes for the Electric Vehicle in Smart Grids and Smart Homes: Present and Proposed Modes," in IEEE Transactions on Vehicular Technology, vol. 65, no. 3, pp. 1007-1020, March 2016, doi: 10.1109/TVT.2015.2481005.
- [62] G. R. Chandra Mouli, M. Kefayati, R. Baldick and P. Bauer, "Integrated PV Charging of EV Fleet Based on Energy Prices, V2G, and Offer of Reserves," in IEEE Transactions on Smart Grid, vol. 10, no. 2, pp. 1313-1325, March 2019, doi: 10.1109/TSG.2017.2763683.
- [63] V. A. Kleftakis and N. D. Hatziargyriou, "Optimal Control of Reversible Substations and Wayside Storage Devices for Voltage Stabilization and Energy Savings in Metro Railway Networks," in IEEE Transactions on Transportation Electrification, vol. 5, no. 2, pp. 515-523, June 2019, doi: 10.1109/TTE.2019.2913355.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-353c4e4e-7504-4299-851d-c4a07098d23e