Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 22, no. 4 | art. no. e208, 2022
Tytuł artykułu

Finite element simulation of edge welding in a fin plate: a study incorporating experimental measurement of input factors

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper discusses the finite element analysis (FEA) performed using SYSWELD software, simulating the Gas Metal Arc Welding (GMAW) of a fin plate on one of its edges. The objective of this work is to study how experimentally measured input factors contribute in the close prediction of thermal and mechanical behaviour of the edge welded fin plate, using FE simulation. The fin plate material considered is ASME SA 387 Gr 12 Cl 2 and of size 1200 mm × 50 mm × 6 mm. Three input factors required for the FEA namely the weld profile, solidus temperature, heat input of welding were identified given their possible influence on the accuracy of FEM prediction. All these factors were determined experimentally using appropriate methods. Then, using these factors as inputs, FEA of edge welding in the fin plate was performed in SYSWELD. This was followed by an experimental trial for validation purpose. The trends of thermal history, strain history and longitudinal bending distortion predicted by FEA and their closeness with the experimentally measured values have been discussed. Based on the findings, it was concluded that the experimental measurement of input factors has enabled the accurate FE simulation of edge welding in fin plate.
Wydawca

Rocznik
Strony
art. no. e208, 2022
Opis fizyczny
Bibliogr. 35 poz., fot., rys., wykr.
Twórcy
  • Welding Research Institute, Bharat Heavy Electricals Limited (BHEL), Trichy 620014, India, sudharsan@bhel.in
  • Department of Production Engineering, National Institute of Technology, Trichy 620015, India
  • Welding Research Institute, Bharat Heavy Electricals Limited (BHEL), Trichy 620014, India
autor
  • Welding Research Institute, Bharat Heavy Electricals Limited (BHEL), Trichy 620014, India
Bibliografia
  • [1] Anca A, Cardona A, Risso J, Fachinotti VD. Finite element modelling of welding processes. Appl Math Model. 2011. https://doi.org/10.1016/j.apm.2010.07.026.
  • [2] Lee HT, Chen CT. Numerical and experimental investigation into effect of temperature field on sensitization of AISI 304 in butt welds fabricated by gas tungsten arc welding. Mater Trans. 2011. https://doi.org/10.2320/matertrans.M2011071.
  • [3] Taraphdar PK, Pandey C, Mahapatra MM. Finite element investigation of IGSCC-prone zone in AISI 304L multipass groove welds. Arch Civ Mech Eng. 2020. https:// doi. org/ 10. 1007/s43452-020-00056-8.
  • [4] Mao T, Ding P, Camanho A, Peng S. Distortion optimization through welding simulation in electric vehicle aluminium assemblies. SAE Technical Pap. 2019. https://doi.org/10.4271/2019-01-0818.
  • [5] Sanderson R, Lucas B, Pocock R. Reduction of manufacturing distortion in arc welded ship panels using thermal tensioning. J Ship Prod. 2008. https://doi.org/10.5957/jsp.2008.24.4.177.
  • [6] Xie LS, Hsieh C. Clamping and welding sequence optimisation for minimising cycle time and assembly deformation. Intl J Mater Prod Technol. 2002;17(5/6):389–99.
  • [7] Lee SH, Kim ES, Park JY, Choi J. Numerical analysis of thermal deformation and residual stress in automotive muffler by MIG welding. J Comput Des Eng. 2018. https://doi.org/10.1016/j.jcde.2018.05.001.
  • [8] Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources. Metall Mater Trans B. 1984;15(6):299–305.
  • [9] Schenk T, Richardson IM, Kraska M, Ohnimus S. Influence of clamping on distortion of welded S355 T-joints. Sci Technol Weld Join. 2009. https://doi.org/10.1179/136217109X412418.
  • [10] Ma N, Huang H, Murakawaa H. Effect of jig constraint position and pitch on welding deformation. J Mater Process Technol. 2015. https://doi.org/10.1016/j.jmatprotec.2015.02.022.
  • [11] Ma N, Huang H, Yin X, Guo N. Welding distortion and inherent deformation under temporary tacking and its released states. Sci Technol Weld Join. 2016. https://doi.org/10.1080/13621718.2015.1123443.
  • [12] Liu C, Zhang JX. Numerical simulation of transient welding angular distortion with external restraints”. Sci Technol Weld Join. 2009. https://doi.org/10.1179/136217108X341175.
  • [13] Islam M, Buijk A, Rohani MR, Motoyama K. Simulation-based numerical optimization of arc welding process for reduced distortion in welded structures. Finite Elem Anal Des. 2014. https://doi.org/10.1016/j.finel.2014.02.003.
  • [14] Gharib AR, Biglari FR, Shafaie M, Kokabi AH. Experimental and numerical investigation of fixture time on distortion of welded part. Int J Adv Manuf Technol. 2019. https://doi.org/10.1007/s00170-019-03874-0.
  • [15] Jiang J, Lee CK, Chiew SP, Tiong PLY. Modelling for welding residual stress of high strength steel box column with SYSWELD. Aust Struct Eng Conf ASEC. 2016;2016:51–5.
  • [16] Song S, Dong P, Zhang J. A full-field residual stress profile estimation scheme for pipe girth welds. In: Proceedings of the ASME 2012 Pressure Vessel and Piping Division Conference (PVP2012), July 15–19, 2012, Toronto, Canada.
  • [17] Lorza RL, Bobadilla MC, Calvo MAM, Roldán PMV. Residual stresses with time-independent cyclic plasticity in finite element analysis of welded joints. Metals. 2017. https://doi.org/10.3390/met7040136.
  • [18] Chen Z, Yu Q, Luo Y, Shenoi RA. Comparative study of welding deformation of a stiffened panel under various welding procedures. J Eng Manuf Proc. Inst Mech Eng Part B. 2019. https://doi.org/10.1177/0954405417712550.
  • [19] Colegrove P, Ikeagu C, Thistlethwaite A, Williams S, Nagy T, Suder W, Steuwer A, Pirling T. Welding process impact on residual stress and distortion. Sci Technol Weld Join. 2009. https://doi.org/10.1179/136217109X406938.
  • [20] Schenk T, Richardson IM, Kraska M, Ohnimus S. Non-isothermal thermomechanical metallurgical model and its application to welding simulations. Sci Technol Weld Join. 2009. https://doi.org/10.1179/136217108X386563.
  • [21] Ghafouri M, Ahola A, Ahn J, Björk T. Welding-induced stresses and distortion in high-strength steel T-joints: numerical and experimental study. J Constr Steel Res. 2022. https://doi.org/10.1016/j.jcsr.2021.107088.
  • [22] Ghafouri M, Ahola A, Ahn J, Björk T. Numerical and experimental investigations on the welding residual stresses and distortions of the short fillet welds in high strength steel plates. Eng Struct. 2022. https://doi.org/10.1016/j.engstruct.2022.114269.
  • [23] Zhu J, Khurshid M, Barsoum I, Barsoum Z. Computational weld-mechanics assessment of welding distortions in a large beam structure. Eng Struct. 2021. https://doi.org/10.1016/j.engstruct. 2021.112055.
  • [24] Podder D, Gupta OP, Das S. Experimental and numerical investigation of effect of welding sequence on distortion of stiffened panels. Weld World. 2019. https:// doi. org/ 10. 1007/s40194-019-00747-8.
  • [25] Urbański T, Taczała M. Prediction of the welding distortions of butt welded joints using total moments method based on equivalent loads. J Manuf Process. 2022. https:// doi. org/ 10. 1016/j.jmapro.2022.01.053.
  • [26] Xu JJ, Gilles P, Duan YG, Yua C. Temperature and residual stress simulations of the NeT single-bead-on-plate specimen using SYS-WELD. Int. J Press Vessel Pip. 2012. https://doi.org/10.1016/j.ijpvp.2012.08.002.
  • [27] Website: https://www.esi-group.com/products/welding-assembly, Accessed 08 Aug 2022.
  • [28] Website: www.gleeble.com Accessed 10 Sep. 2021.
  • [29] Kawulok P, Schindler I, Smetana B, Moravec J. The relationship between nil-strength temperature, zero strength temperature and solidus temperature of carbon steels. Metals. 2020. https://doi.org/10.3390/met10030399.
  • [30] Kuzsella L, Lukács J, Szűcs K. Nil-Strength temperature and hot tensile tests on S960ql high-strength low-alloy steel. Prod Proces and Syst. 2012. https://doi.org/10.13140/2.1.4655.9369.
  • [31] EPRI. “The Grades 11 and 12 Low Alloy Steel Handbook: 11/4Cr1/4Mo, 1Cr1/4Mo, 13CrMo44, 620/621, STPA 22/23. Electric Power Research Institute, Palo Alto, CA: 2007. 1013358.
  • [32] Dong WC, Gao DB, Lu SP. Numerical investigation on residual stresses of the safe-end/nozzle dissimilar metal welded joint in CAP1400 nuclear power plants. Acta Metallurgica Sinica (Engl Lett). 2019. https://doi.org/10.1007/s40195-018-0803-8.
  • [33] Okerblom NO. Calculation of deformation of welded metal structures. London: HMSO; 1958. p. 1–50.
  • [34] Radaj D. Heat Effects of welding: temperature field, residual stress Distortion. Heidelberg: Springer; 1992. p. 182–218.
  • [35] Wan YL, Bibby MJ, Goldak JA. Transient longitudinal strain changes during welding. Exp Mech. 1979;19(7):259–64.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3514e34e-c8d4-4092-badb-3908e47382fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.