Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 55, nr 1 | 238--253
Tytuł artykułu

Positive solutions for fractional differential equation at resonance under integral boundary conditions

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
By using the theory of fixed point index and spectral theory of linear operators, we study the existence of positive solutions for Riemann-Liouville fractional differential equations at resonance. Our approach will provide some new ideas for the study of this kind of problem.
Wydawca

Rocznik
Strony
238--253
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
  • Department of Mathematics, Tianjin University of Finance and Economics, Tianjin 300222, P. R. China, wang_youyu@163.com
autor
  • Department of Mathematics, Tianjin University of Finance and Economics, Tianjin 300222, P. R. China, yuemaths@163.com
autor
  • Department of Mathematics, Tianjin University of Finance and Economics, Tianjin 300222, P. R. China, xianfeil@163.com
Bibliografia
  • [1] T. Chen, W. Liu, and Z. Hu, A boundary value problem for fractional differential equation with p-Laplacian operator at resonance, Nonlinear Anal. 75 (2012), 3210–3217.
  • [2] W. Jiang, The existence of solutions to boundary value problems of fractional differential equations at resonance, Nonlinear Anal. 74 (2011), 1987–1994.
  • [3] F. Wang, Y. Cui, and F. Zhang, Existence of nonnegative solutions for second order m-point boundary value problems at resonance, Appl. Math. Comput. 217 (2011), 4849–4855.
  • [4] Z. Bai, Solvability for a class of fractional m-point boundary value problem at resonance, Comput. Math. Appl. 62 (2011), 1292–1302.
  • [5] Y. Ji, W. Jiang, and J. Qiu, Solvability of fractional differential equations with integral boundary conditions at resonance, Topol. Method. Nonl. Anal. 42 (2013), 461–479.
  • [6] W. Jiang, Solvability of fractional differential equations with p-Laplacian at resonance, Appl. Math. Comput. 260 (2015), 48–56.
  • [7] Y. Wu and W. Liu, Positive solutions for a class of fractional differential equations at resonance, Adv. Differ. Equ. 2015 (2015), 241.
  • [8] T. Chen, W. Liu, and H. Zhang, Some existence results on boundary value problems for fractional p-Laplacian equation at resonance, Bound. Value Probl. 2016 (2016), 51.
  • [9] W. Zhang and W. Liu, Existence of solutions for fractional differential equations with infinite point boundary conditions at resonance, Bound. Value Probl. 2018 (2018), 36.
  • [10] Y. Wang and H. Wang, Triple positive solutions for fractional differential equation boundary value problems at resonance, Appl. Math. Lett. 106 (2020), 106376.
  • [11] Y. D. Ri, H. C. Choi, and K. J. Chang, Constructive existence of solutions of multi-point boundary value problem for Hilfer fractional differential equation at resonance, Mediterr. J. Math. 17 (2020), 95.
  • [12] Y. Wang and L. Liu, Positive solutions for a class of fractional 3-point boundary value problems at resonance, Adv. Differ. Equ. 2017 (2017), 7.
  • [13] Y. Wang, Necessary conditions for the existence of positive solutions to fractional boundary value problems at resonance, Appl. Math. Lett. 97 (2019), 34–40.
  • [14] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, Elsevier, Amsterdam, The Netherlands, 2006.
  • [15] X. Meng and M. Stynes, The Green function and a maximum principle for a Caputo two-point boundary value problem with a convection term, J. Math. Anal. Appl. 461 (2018), no. 1, 198–218.
  • [16] Y. Wang, X. Li, and Y. Huang, The Green’s function for Caputo fractional boundary value problem with a convection term, AIMS Math. 7 (2022), no. 4, 4887–4897, DOI: https://doi.org/10.3934/math.2022272.
  • [17] D. Guo and J. Sun, Nonlinear Integral Equations, Shandong Science and Technology Press, Jinan, 1987 (in Chinese).
  • [18] D. Guo, Nonlinear Functional Analysis, Shandong Science and Technology Press, Jinan, 1985 (in Chinese).
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-348afe1f-da37-482b-a640-a9c05820509c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.