Warianty tytułu
Języki publikacji
Abstrakty
Material properties largely depend on their structure, and are strongly dependent on the scale of observation. Under the influence of various processes, the structure of a material can undergo evolution, which leads to major changes in the mechanical parameters and morphology of the medium. To understand the behaviour of a given material exposed to the influence of various factors, e.g. loading and temperature treatment, and to be able to modify it appropriately, it is crucial to recognize its structure both in the scale of engineering applications and at the micro-scale. The article proposes a procedure for assessing changes in the structure of sandstone exposed to the temperature treatment. The presented procedure allows the morphology of the material to be evaluated and the influence of temperature treatment on mechanical parameters of rocks to be analysed, by combining use of different laboratory techniques. The changes in rock material have been characterized using three investigative techniques, i.e. a uniaxial compression test, nanoindentation and micro-computed tomography. The uniaxial compression tests were carried out for 11 different temperature values in the range of 23–1000 °C, which enabled the determination of the change in uniaxial compressive strength and Young’s modulus of the sandstone as a function of temperature. Micro-scale laboratory tests were utilised to identify changes in the mechanical and morphological parameters of the sandstone exposed to the temperature of 1000 °C. The results were referred to those obtained for the reference samples, i.e. not subjected to heating (T = 23 °C). Comparison of the results showed an evident relation between the microstructure changes and the mesoscopic properties.
Czasopismo
Rocznik
Tom
Strony
461--482
Opis fizyczny
Bibliogr. 45 poz., fot., rys., wykr.
Twórcy
autor
- Faculty of Civil Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, adrian.rozanski@pwr.edu.pl
autor
- Department of Mechanical Devices Testing and Rocks, Laboratory of Mining Geomechanics, Central Mining Institute, Katowice, Poland
autor
- Faculty of Civil Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Faculty of Civil Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Department of Mechanical Devices Testing and Rocks, Laboratory of Mining Geomechanics, Central Mining Institute, Katowice, Poland
Bibliografia
- [1] Ferrero AM, Marini P. Experimental studies on the mechanical behaviour of two thermal cracked marbles. Rock Mech Rock Eng. 2001;34:57–66. https://doi.org/10.1007/s006030170026.
- [2] Hajpál M, Török Á. Mineralogical and colour changes of quartz sandstones by heat. Env Geol. 2004;46:311–22. https://doi.org/10.1007/s00254-004-1034-z.
- [3] Liang WG, Xu SG, Zhao YS. Experimental study of temperature effects on physical and mechanical characteristics of salt rock. Rock Mech Rock Eng. 2006;39:469–82. https://doi.org/10.1007/s00603-005-0067-2.
- [4] Liu X, Yuan S, Sieffert Y, Fityus S, Buzzi O. Changes in mineralogy, microstructure, compressive strength and intrinsic permeability of two sedimentary rocks subjected to high-temperature heating. Rock Mech Rock Eng. 2016;49:2985–98. https://doi.org/10.1007/s00603-016-0950-z.
- [5] Yavuz H, Demirdag S, Caran S. Thermal effect on the physical properties of carbonate rocks. Int J Rock Mech Min Sci. 2010;47:94–103. https://doi.org/10.1016/j.ijrmms.2009.09.014.
- [6] Younger PL. Hydrogeological and geomechanical aspects of underground coal gasification and its direct coupling to carbon capture and storage. Mine Water Environ. 2011;30:127–40. https://doi.org/10.1007/s10230-011-0145-5.
- [7] Tsang C-F. Linking thermal, hydrological, and mechanical processes in fractured rocks. Annu Rev Earth Planet Sci. 1999;27:359–84. https://doi.org/10.1146/annurev.earth.27.1.359.
- [8] Adam D, Markiewicz R. Energy from earth-coupled structures, foundations, tunnels and sewers. Géotechnique. 2009;59:229–36. https://doi.org/10.1680/geot.2009.59.3.229.
- [9] Dean SW, Takarli M, Prince-Agbodjan W. Temperature effects on physical properties and mechanical behavior of granite: experimental investigation of material damage. J ASTM Int. 2008;5:100464. https://doi.org/10.1520/JAI100464.
- [10] R. P. g., D.R. Viete, B.J. Chen, M.S.A. Perera, Transformation plasticity and the effect of temperature on the mechanical behaviour of Hawkesbury sandstone at atmospheric pressure, Engineering Geology. 151 (2012) 120–127. https://doi.org/10.1016/j.enggeo.2012.09.007.
- [11] Sygała A, Bukowska M, Janoszek T. High temperature versus geomechanical parameters of selected rocks-the present state of research. J Sustain Min. 2013;12:45–51. https://doi.org/10.7424/jsm130407.
- [12] Tian H, Kempka T, Yu S, Ziegler M. Mechanical properties of sandstones exposed to high temperature. Rock Mech Rock Eng. 2016;49:321–7. https://doi.org/10.1007/s00603-015-0724-z.
- [13] Mahanta B, Singh TN, Ranjith PG. Influence of thermal treatment on mode I fracture toughness of certain Indian rocks. Eng Geol. 2016;210:103–14. https://doi.org/10.1016/j.enggeo.2016.06.008.
- [14] Cao P, Liu T, Pu C, Lin H. Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression. Eng Geol. 2015;187:113–21. https://doi.org/10.1016/j.enggeo.2014.12.010.
- [15] Sirdesai NN, Mahanta B, Ranjith PG, Singh TN. Effects of thermal treatment on physico-morphological properties of Indian fine-grained sandstone. Bull Eng Geol Environ. 2019;78:883–97. https://doi.org/10.1007/s10064-017-1149-6.
- [16] Chen Y-L, Wang S-R, Ni J, Azzam R, Fernández-steeger TM. An experimental study of the mechanical properties of granite after high temperature exposure based on mineral characteristics. Eng Geol. 2017;220:234–42. https://doi.org/10.1016/j.enggeo.2017.02.010.
- [17] Siegesmund S, Mosch S, Scheffzük Ch, Nikolayev DI. The bowing potential of granitic rocks: rock fabrics, thermal properties and residual strain. Environ Geol. 2008;55:1437–48. https://doi.org/10.1007/s00254-007-1094-y.
- [18] Somerton WH, Thermal properties and temperature-related behavior of rock/fluid systems, Elsevier, 1992.
- [19] Pinińska J, The influence of elevated temperature on the mechanical properties of rocks. Works of the Institute of Geotechnics and Hydrotechnics of the Wrocław University of Technology, in: 2007: pp. 527–534.
- [20] Keshavarz M, Pellet FL, Loret B. Damage and changes in mechanical properties of a gabbro thermally loaded up to 1,000°C. Pure Appl Geophys. 2010;167:1511–23. https://doi.org/10.1007/s00024-010-0130-0.
- [21] Dimitriyev AP, Kusyayev LS, Protasov YI, Yamschichikov VS. Physical properties of rocks at high temperature (translated from Russian). Moskva: Nedra; 1969.
- [22] Rao Q, Wang Z, Xie H, Xie Q. Experimental study of mechanical properties of sandstone at high temperature. J Cent South Univ Technol. 2007;14:478–83. https://doi.org/10.1007/s11771-007-0311-x.
- [23] Chen Y-L, Ni J, Shao W, Azzam R. Experimental study on the influence of temperature on the mechanical properties of granite under uniaxial compression and fatigue loading. Int J Rock Mech Min Sci. 2012;56:62–6. https://doi.org/10.1016/j.ijrmms.2012.07.026.
- [24] Lintao Y, Marshall AM, Wanatowski D, Stace R, Ekneligoda T. Effect of high temperatures on sandstone-a computed tomography scan study. Int J Phys Model Geotech. 2017;17:75–90. https://doi.org/10.1680/jphmg.15.00031.
- [25] Fan Z, Wei H, Han-qun G, Da-wei H, Qian S, Jian-fu S, Nanoin-dentation tests on granite after heat treatment, Rock and Soil Mechanics. 39 (2018) 235-245.
- [26] Stefaniuk D, Tankiewicz M, Stróżyk J. X-Ray microtomography (μCT) as a useful tool for visualization and interpretation of shear strength test results. Studia Geotechnica et Mechanica. 2015;36:47–55. https://doi.org/10.2478/sgem-2014-0035.
- [27] Cała M, Cyran K, Kawa M, Kolano M, Łydżba D, Pachnicz M, Rajczakowska M, Różański A, Sobótka M, Stefaniuk D, Stopkowicz A, Wałach D. Identification of microstructural properties of shale by combined use of X-ray micro-CT and nanoindentation tests. Procedia Eng. 2017;191:735–43. https://doi.org/10.1016/j.proeng.2017.05.239.
- [28] Bukowska M. Inclination of the rock mass to rockburst-geological and geomechanical test methods. Katowice: Central Mining Institute; 2012.
- [29] Brown ET, The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014, R. Ulusay (Ed.), Springer International Publishing, Cham, Switzerland (2015), p. 293,(83.29€. ISBN 978–3–319–07712–3 (Hbk), 978–3–319–07713–0 (eBook)), Elsevier, 2015.
- [30] Landis EN, Keane DT. X-ray microtomography. Mater Charact. 2010;61:1305–16. https://doi.org/10.1016/j.matchar.2010.09.012.
- [31] Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algo-rithm. J Opt Soc Am A. 1984;1:612. https://doi.org/10.1364/JOSAA.1.000612.
- [32] Rodet T, Noo F, Defrise M. The cone-beam algorithm of Feld-kamp, Davis, and Kress preserves oblique line integrals. Med Phys. 2004;31:1972–5. https://doi.org/10.1118/1.1759828.
- [33] Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–83. https://doi.org/10.1557/JMR.1992.1564.
- [34] Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res. 2004;19:3–20. https://doi.org/10.1557/jmr.2004.19.1.3.
- [35] Sneddon IN. The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int J Eng Sci. 1965;3:47–57. https://doi.org/10.1016/0020-7225(65)90019-4.
- [36] Bolshakov A, Pharr GM. Inaccuracies in Sneddon’s solution for elastic indentation by a rigid cone and their implications for nanoindentation data analysis. MRS Proc. 1996;436:189. https://doi.org/10.1557/PROC-436-189.
- [37] Constantinides G, Ulm F-J, Van Vliet K. On the use of nanoin-dentation for cementitious materials. Mat Struct. 2003;36:191–6. https://doi.org/10.1007/BF02479557.
- [38] Hildebrand T, Rüegsegger P. A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc. 1997;185:67–75. https://doi.org/10.1046/j.1365-2818.1997.1340694.x.
- [39] Michałek J, Pachnicz M, Sobótka M. Application of nanoin-dentation and 2D and 3D imaging to characterise selected features of the internal microstructure of spun concrete. Materials. 2019;12:1016. https://doi.org/10.3390/ma12071016.
- [40] Bobko C, Ulm F-J. The nano-mechanical morphology of shale. Mech Mater. 2008;40:318–37. https://doi.org/10.1016/j.mechmat.2007.09.006.
- [41] Cariou S, Ulm F-J, Dormieux L. Hardness–packing density scaling relations for cohesive-frictional porous materials. J Mech Phys Solids. 2008;56:924–52. https://doi.org/10.1016/j.jmps.2007.06.011.
- [42] Ganneau FP, Constantinides G, Ulm F-J. Dual-indentation technique for the assessment of strength properties of cohesive-frictional materials. Int J Solids Struct. 2006;43:1727–45. https://doi.org/10.1016/j.ijsolstr.2005.03.035.
- [43] Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D. Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct. 2003;40:3647–79. https://doi.org/10.1016/S0020-7683(03)00143-4.
- [44] Łydżba D, Różański A. Microstructure measures and the minimum size of a representative volume element: 2D numerical study. Acta Geophys. 2014;62:1060–86. https://doi.org/10.2478/s11600-014-0226-5.
- [45] Torquato S, Random heterogeneous materials: microstructure and macroscopic properties, Springer Science & Business Media, 2013.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3474f2f7-9afd-4cda-85fb-35d3ef7eb1aa