Warianty tytułu
Języki publikacji
Abstrakty
Energy-harvesting systems installed on facades have an immense influence on the perception of architecture. Technologies at various stages of advancement are currently used. Apparent (clearly visible) PV elements (e.g. old-generation applied solar panels) are being replaced by technologies that integrate those systems into the building’s envelope using miniaturization, lamination and surface mounting (e.g. BIPV). In the current application of PV, three distinct trends ca be observed: (i) the integration of energy-collecting elements into the shell and (ii) their deliberate display and use as, for example, shading, cladding or other forms of decoration, or (iii) the development of “invisible” PV systems. The research question is how the development of these systems affects architecture. Does the process of integration enrich the building’s architectural expression or negatively affect the perception of the building’s transparent surfaces?
Słowa kluczowe
Rocznik
Tom
Strony
44--54
Opis fizyczny
Bibliogr. 14 poz., fig.
Twórcy
autor
- Faculty of Architecture, Wroclaw University of Technology Poland
- Faculty of Architecture, Wroclaw University of Technology Poland
Bibliografia
- 1. Alghamedi R., Vasiliev M., Nur-E-Alam, M., Alameh, K., 2014: Spectrally-selective all-inorganic scattering luminophores for solar energy-harvesting clear glass windows, Scientific Reports 4, Article number: 6632 (2014), For more information see: http://www.nature.com/articles/srep06632
- 2. Brzezicki M., 2017: Light-transmitting energy-harvesting systems. Review of selected case-studies, Powerskin Conference Proceedings, Auer T., Knaack U., Schneider J., eds. TU Delft Open, 2017
- 3. Colton R. D., 2015: Assessing Solar PV Glare In Dense Residential Neighborhoods, Solar Industry, vol. 7, 3, p. 1−6, For more information see: http://solarindustrymag.com/online/issues/SI1501/FEAT_02_Assessing-Solar-PV-Glare-In-Dense-Residential-Neighborhofods.html
- 4. Cronemberger J., Almagro Corpas M., Cerón I., Caamaño-Martín E., Vega Sánchez S., 2014: BIPV technology application: Highlighting advances, tendencies and solutions through Solar Decathlon Europe houses, Energy and Buildings 83 (2014) 44−56.
- 5. Farkas K. Ed., 2013: Designing Photovoltaic Systems For Architectural Integration. Criteria and guidelines for product and system developers, Report T.41.A.3/2: IEA SHC Task 41 Solar energy and Architecture 2013: Available at: http://task41.iea-shc.org/publications
- 6. Guide to BIPV. Building Integrated Photovoltaics 2015: Available at: http://www.polysolar.co.uk/
- 7. Lunt R.R, Bulovic V., 2011: Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications. Applied Physics Letters. 98 (11).
- 8. Munari Probst M.C., Roecker C. eds., 2012: Solar energy systems in architecture. Integration criteria and guidelines, Report T.41.A.2: IEA SHC Task 41 Solar energy and Architecture, Available at: http://task41.iea-shc.org/publications
- 9. Muszyńska-Łanowy M., 2010: Czarne fasady – fotowoltaiczne okładziny CIS (in Polish). Świat Szkła nr 7−8,
- 10. Muszyńska-Łanowy M., 2011: Ekologia dla oczu. Estetyka powłoki BIPV (in Polish). cz.1, Świat Szkła 7−8,
- 11. Polysolar 2015: Thin-film Photovoltaic Glazing for BIPV solutions, For more information see: http://www.polysolar.co.uk/Technology/thin-film
- 12. Prasad D., Snow M. eds., 2005: Designing with solar power. A Source Book for Building Integrated Photovoltaics (BIPV), Earthscan, London.
- 13. Richter Dahl Rocha Develops Innovative Façade for SwissTech Convention Center 2014: For more information see: http://www.archdaily.com/491135/richter-dahl-rocha-develop-innovative-facade-for-swisstech-convention-center
- 14. Weller B., Hemmerle C., Jakubetz S., Unnewehr S., 2010: Detail Practice: Photovoltaics: Technology, Architecture, Installation, Edition Detail, Birkhaser Verlag, Basel, Switzerland.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-34454bbc-9556-40b0-b74e-2f5763d0d76e