Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2022 | No. 64 (4) | 631--650
Tytuł artykułu

Distribution and characterization of organic matter within the sea surface microlayer in the Gulf of Gdańsk

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present the characterisation and distribution of organic matter (OM) within the sea surface microlayer (SML) and underlying water (ULW) collected in October 2015 at nine stations in the Baltic Sea, Gulf of Gdańsk, encompassing the Vistula River plume. The salinity of >7 throughout the transect indicated Vistula plume was possibly displaced westward by the preceding northerly and easterly winds between 5.7 and 10.7 ms–1 during the sampling campaign. Spectral analysis pointed to the highest contribution of aromatic and high molecular weight molecules (lowest spectral slope (SR) ratios and highest absorption coefficient at 254 nm (aCDOM(254)) at the first two stations near the river mouth, demonstrating a very limited influence of the river plume. Concentrations of surface-active organic substances (SAS) ranged from 0.28 to 0.60 mg L−1 in eq. Triton-X-100 in SML, and from 0.22 to 0.47 mg L−1 in eq. Triton-X-100 in the ULW, while POC concentrations ranged from 0.27 to 0.84 mg L−1 in SML and from 0.20 to 0.37 mg L−1 in ULW. Enrichment of SAS and POC detected at the highest wind speeds indicates rapid SML recovery by OM transported from the ULW. Low lipids to POC contribution, on average 5% and 7% in SML and ULW respectively, points to eutrophic conditions. Statistically significant negative correlation between SR and the Lipid:PIG ratio in SML and ULW suggests the production of lower molecular weight OM by phytoplankton living under favourable environmental conditions. Accumulation of lipid reserves triacylglycerols (TG) in the SML indicates more stressful plankton growth conditions compared to ULW.
Wydawca

Czasopismo
Rocznik
Strony
631--650
Opis fizyczny
Bibliogr. 118 poz., map., rys., tab., wykr.
Twórcy
  • Division for Marine and Environmental Research, Rudjer Boskovic Institute, 10000, Zagreb, Croatia
  • Physical Oceanography Department, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland, drozd@iopan.pl
  • Division for Marine and Environmental Research, Rudjer Boskovic Institute, 10000, Zagreb, Croatia
  • Division for Marine and Environmental Research, Rudjer Boskovic Institute, 10000, Zagreb, Croatia
Bibliografia
  • 1. Andrén, E., 1999. Changes in the composition of the diatom flora during the last century indicate increased eutrophication of the Oder estuary, south-western Baltic Sea. Estuar. Coast. Shelf Sci. 48 (6), 665-676. https://doi.org/10.1006/ecss.1999.0480
  • 2. Archer, C.L., Jacobson, M.Z., 2005. Evaluation of global wind power. J. Geophys. Res. Atmos. 110, D1110. https://doi.org/10.1029/2004JD005462
  • 3. Arrigo, K.R., Brown, C.W., 1996. Impact of chromophoric dissolved organic matter on UV inhibition of primary productivity in the sea. Mar. Ecol. Prog. Ser. 140, 207-216. https://doi.org/10.3354/meps140207
  • 4. Arts, M.T., 1999. Lipids in Freshwater Zooplankton: Selected Ecological and Physiological Aspects. In: Arts, M.T., Wainman, B.C. (Eds.), Lipids in Freshwater Ecosystems. Springer, New York, NY, 71-90. https://doi.org/10.1007/978-1-4612-0547-0_5
  • 5. Barthelmess, E.T., Schütte, F., Engel, A., 2021. Variability of the Sea Surface microlayer Across a filament’s edge and potential influences on gas exchange. Front. Mar. Sci. 88, 718384. https://doi.org/10.3389/fmars.2021.718384
  • 6. Belanger, S., Babin, M., Larouche, P., 2008. An empirical ocean color algorithm for estimating the contribution of chromophoric dissolved organic matter to total light absorption in optically complex waters. J. Geophys. Res. 113, C04027. https://doi.org/10.1029/2007JC004436
  • 7. Bligh, E.G., Dyer, W.J., 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911-917. https://doi.org/10.1139/y59-099
  • 8. Bourguet, N., Goutx, M., Ghiglione, J.F, Pujo-Pay, M., Mevel, G., Momzikoff, A., Mousseau, L., Guigue, C., Garcia, N., Raimbault, P., Pete, R., Oriol, L., Lefevre, D., 2009. Lipid biomarkers and bacterial lipase activities as indicators of organic matter and bacterial dynamics in contrasted regimes at the DYFAMED site, NW Mediterranean. Deep-Sea Res. Pt. II 56, 1454-1469. https://doi.org/10.1016/j.dsr2.2008.11.034
  • 9. Broecker, H.-C., Petermann, J., Siems, W., 1978. The influence of wind on CO2-exchange in a wind-wave tunnel, including the effects of monolayers. J. Mar. Res. 36, 595-610.
  • 10. Bruggemann, M., Hayeck, N., George, C., 2018. Interfacial photo-chemistry at the ocean surface is a global source of organic vapors and aerosols. Nat. Commun. 9, 2101. https://doi.org/10.1038/s41467-018-04528-7
  • 11. Buszewski, B., Buszewska, T., Chmarzy ́nski, A., Kowalkowski, T., Kowalska, J., Kosobucki, P., Zbytniewski, R., Namie ́snik, J., Kot-Wasik, A., Pacyna, J., Panasiuk, D., 2005. The present condition of the Vistula River catchment area and its impact on the Baltic Sea coastal zone. Reg. Environ. Chang. 5, 97-110. https://doi.org/10.1007/s10113-004-0077-8
  • 12. Cantarero, S.I., Henríquez-Castillo, C., Dildar, N., Vargas, C.A., von Dassow, P., Cornejo-D’Ottone, M., Sepúlveda, J., 2020. Size-Fractionated Contribution of Microbial Biomass to Suspended Organic Matter in the Eastern Tropical South Pacific Oxygen Minimum Zone. Front. Mar. Sci. 7, 1-20. https://doi.org/10.3389/fmars.2020.540643
  • 13. Coble, P.G., 1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 51, 325-346. https://doi.org/10.1016/0304-4203(95)00062-3
  • 14. Coble, P.G., 2007. Marine optical biogeochemistry: The chemistry of ocean color. Chem. Rev. 107, 402-418 10.1021/cr050350+.
  • 15. Ćosović, B., Vojvodić, V., Pleše, T., 1985. Electrochemical determination and characterization of surface active substances in freshwaters. Water Res. 19, 175-183. https://doi.org/10.1016/0043-1354(85)90196-4
  • 16. Ćosović, B., Vojvodić, V., 1998. Voltammetric analysis of surface active substances in natural seawater. Electroanalysis 10, 429-434. https://doi.org/10.1002/(SICI)1521-4109(199805)10:6<429::AID-ELAN429>3.0.CO;2-7
  • 17. Ćosović, B., 2005. Surface-Active Properties of the Sea Surface Microlayerand Consequences for Pollution in the Mediterranean Sea. The Handbook of Environmental Chemistry. Springer https://doi.org/10.1007/b107150
  • 18. Cunliffe, M., Engel, A., Frka, S., Gašparovi ́c, B., Guitart, C., Murrell, J.C., Salter, M., Stolle, C., Upstill-Goddard, R., Wurl, O., 2013. Sea surface microlayers: A unified physicochemical and biological perspective of the air-ocean interface. Prog. Oceanogr. 109, 104-116. https://doi.org/10.1016/j.pocean.2012.08.004
  • 19. Cyberska, B., Krzymiński, W, 1988. Extension of the Vistula River water in the Gulf of Gdańsk. In: Proc. 16th Conf. Baltic Oceanograph. Instit. Mar. Res., Kiel, Germany, 290-304.
  • 20. Dembitsky, V.M., Rozentsvet, O.A., 1990. Phospholipid composition of some marine red algae. Phytochemistry 29, 3149-3152. https://doi.org/10.1016/0031-9422(90)80175-G
  • 21. Derieux, S., Fillaux, J., Saliot, A., 1998. Lipid class and fatty acid distributions in particulate and dissolved fractions in the north Adriatic Sea. Org. Geochem. 29, 5-7. https://doi.org/10.1016/S0146-6380(98)00089-8
  • 22. Dragićević, D., Pravdić, V., 1981. Properties of the seawater—air interface: Rates of surface film formation under steady state conditions. Limnol. Oceanogr. 26, 492-499. https://doi.org/10.4319/lo.1981.26.3.0492
  • 23. Drozdowska, V., Babichenko, S., Lisin, A., 2002. Natural water fluorescence characteristics based on lidar investigations of a surface water layer polluted by an oil film; the Baltic cruise — May 2000. Oceanologia 44 (3), 339-354.
  • 24. Drozdowska, V., 2007. Seasonal and spatial variability of Surface seawater fluorescence properties in the Baltic and Nordic Seas: Results of lidar experiments. Oceanologia 49 (1), 59-69.
  • 25. Drozdowska, V., Fateyeva, N.L., 2013. Spectrophotometric study of natural Baltic surfactants — results of marine experiment. In: Traczewska, T.M., Hanus-Lorenz, B. (Eds.), Hydrobiology in Environment Protection. Oficyna Wydawnicza Politechniki Wrocławskiej, Wroclaw, 25-32.
  • 26. Drozdowska, V., Józefowicz, M., 2015. Spectrophotometric studies of marine surfactants in the southern Baltic Sea. Oceanologia 57 (2), 159-167. https://doi.org/10.1016/j.oceano.2014.12.002
  • 27. Drozdowska, V., Kowalczuk, P., Józefowicz, M., 2015. Spectrofluorometric characteristics of fluorescent dissolved organic matter in a surface microlayer in the Southern Baltic coastal waters. J. Eur. Opt. Soc. 10, 15050. https://doi.org/10.2971/jeos.2015.15050
  • 28. Drozdowska, V., Wrobel, I., Markuszewski, P., Makuch, P., Raczkowska, A., Kowalczuk, P., 2017. Study on organic matter fractions in the surface microlayer in the Baltic Sea by spectrophotometric and spectrofluorometric methods. Ocean Sci. 13, 633-647. https://doi.org/10.5194/os-13-633-2017
  • 29. Drozdowska, V., Kowalczuk, P., Konik, M., Dzierzbicka-Glowacka, L., 2018. Study on different fractions of organic molecules in the Baltic Sea surface microlayer by spectrophoto-and spectrofluorimetric methods. Front. Mar. Sci. 5, 1-12. https://doi.org/10.3389/fmars.2018.00456
  • 30. Engel, A., Bange, H.W., Cunliffe, M., Burrows, S.M., Friedrichs, G., Galgani, L., Herrmann, H., Hertkorn, N., Johnson, M., Liss, P.S., Quinn, P.K., Schartau, M., Soloviev, A., Stolle, C., Upstill-Goddard, R.C., van Pinxteren, M., Zäncker, B., 2017. The Ocean’s vital skin: toward an integrated understanding of the sea surface microlayer. Front. Mar. Sci. 4. https://doi.org/10.3389/fmars.2017.00165
  • 31. Falkowska, L., 1999. Sea surface microlayer: A field evaluation of teflon plate, glass plate and screen sampling techniques. Part 2. Dissolved and suspended matter. Oceanologia 41 (2), 223-240.
  • 32. Frew, N.M., Goldman, J.C., Dennett, M.R., Johnson, A.S., 1990. Impact of phytoplankton-generated surfactants on air-sea gas exchange. J. Geophys. Res. 95, 3337. https://doi.org/10.1029/jc095ic03p03337
  • 33. Frka, S., Kozarac, Z., ́ Ćosović, B., 2009. Characterization and seasonal variations of surface active substances in the natural sea surface micro-layers of the coastal Middle Adriatic stations. Estuar. Coast. Shelf Sci. 85, 555-564. https://doi.org/10.1016/j.ecss.2009.09.023
  • 34. Frka, S., Gašparović, B., Marić, D., Godrijan, J., Djakovac, T., Vojvodić, V., Dautović, J., Kozarac, Z., 2011. Phytoplankton driven distribution of dissolved and particulate lipids in a semienclosed temperate sea (Mediterranean): Spring to summer situation. Estuar. Coast. Shelf Sci. 93 (4), 290-304. https://doi.org/10.1016/j.ecss.2011.04.017
  • 35. Gašparović, B., Kozarac, Z., Saliot, A., ́ Ćosović, B., Möbius, D., 1998. Physico-chemical characterization of natural and ex-situ reconstructed sea-surface microlayers. J. Colloid Interface Sci. 208, 191-202. https://doi.org/10.1006/jcis.1998.5792
  • 36. Gašparović, B., Plavšić, M., Ćosović,, B., Saliot, A., 2007. Organic matter characterization in the sea surface microlayers in the subarctic Norwegian fjords region. Mar. Chem. 105, 1-14. https://doi.org/10.1016/j.marchem.2006.12.010
  • 37. Gašparović, B., Djakovac, T., Tepić, N., Degobbis, D., 2011. Relationships between surface-active organic substances, chlorophyll a and nutrients in the northern Adriatic Sea. Cont. Shelf Res. 31, 1149-1160. https://doi.org/10.1016/j.csr.2011.04.010
  • 38. Gašparović, B., Frka, S., Koch, B.P., Zhu, Z.Y., Bracher, A., Lechtenfeld, O.J., Neogi, S.B., Lara, R.J., Kattner, G., 2014. Factors influencing particulate lipid production in the East Atlantic Ocean Deep-Sea Res Pt. I. 89, 56-67. https://doi.org/10.1016/j.dsr.2014.04.005
  • 39. Gašparović, B., Kazazić, S.P., Cvitešić, A., Penezić, A., Frka, S., 2015. Improved separation and analysis of glycolipids by Iatroscan thin-layer chromatography-flame ionization detection. J. Chromatogr. A 1409, 259-267. https://doi.org/10.1016/j.chroma.2015.07.047
  • 40. Gašparović, B., Penezić, A., Lampitt, R.S., Sudasinghe, N., Schaub, T., 2016. Free fatty acids, tri-, di- and monoacylglycerol production and depth-related cycling in the Northeast Atlantic. Mar. Chem. 186, 101-109. https://doi.org/10.1016/j.marchem.2016.09.002
  • 41. Gašparović, B., Kazazić, S.P., Cvitešić, A., Penezić, A., Frka, S., 2017. Corrigendum to “Improved separation and analysis of glycolipids by Iatroscan thin-layer chromatography—flame ionization detection”. [J. Chromatogr. A 1409 (2015) 259267. https://doi.org/10.1016/j.chroma.2015.07.047]. J. Chromatogr. A 1521. https://doi.org/10.1016/j.chroma.2017.09.038
  • 42. Gašparović, B., Penezić, A., Frka, S., Kazazić, S., Lampitt, R.S., Holguin, F.O., Sudasinghe, N., Schaub, T., 2018. Particulate sulfur-containing lipids: production and cycling from the epipelagic to the abyssopelagic zones. Deep-Sea Res. Pt. I 134, 12-22. https://doi.org/10.1016/j.dsr.2018.03.007
  • 43. Gerin, C., Goutx, M., 1993. Separation and quantification of phospholipids from marine bacteria with the latroscan mark IV TLC—FID. J. Planar Chromatogr. 6, 307-312.
  • 44. Gerin, C., Goutx, M., 1994. Iatroscan-measured particulate and dissolved lipids in the Almeria-Oran frontal system (Almofront-1, May 1991). J. Mar. Sys. 5, 343-360. https://doi.org/10.1016/0924-7963(94)90055-8
  • 45. Giani, M., Savelli, F., Berto, D., Zangrando, V., ́ Ćosović, V., Vojvocić, V., 2005. Temporal dynamics of dissolved and particulate organic carbon in the northern Adriatic Sea in relation to the mucilage events. Sci. Total Environ. 353, 126-138. https://doi.org/10.1016/j.scitotenv.2005.09.062
  • 46. Glasby, G.P., Szefer, P., 1998. Marine pollution in Gdansk Bay, Puck Bay and the Vistula Lagoon, Poland: An overview. Sci. Total Environ. 212, 49-57. https://doi.org/10.1016/S0048-9697(97)00333-1
  • 47. Goutx, M., Guigue, C., Striby, L., 2003. Triacylglycerol biodegradation experiment in marine environmental conditions: Definition of a new lipolysis index. Org. Geochem. 34, 1465-1473. https://doi.org/10.1016/S0146-6380(03)00119-0
  • 48. Grelowski, A., Wojewodzki, T., 1996. The impact of the Vistula river on the hydrological conditions in the Gulf of Gdansk in 1994. Bull. Sea Fish. Inst. 137, 23-33.
  • 49. Guschina, I.A., Harwood, J.L., 2009. Algal lipids and effect of the environment on their biochemistry. In: Kainz, M., Brett, M.T., Arts, M.T. (Eds.), Lipids in Aquatic Ecosystems. Springer, New York, 1-24. https://doi.org/10.1007/978-0-387-89366-2_1
  • 50. Harvey, H.R., Tuttle, J.H., Bell, J., 1995. Kinetics of phytoplankton decay during simulated sedimentation, Changes in biochemical composition and microbial activity under oxic and anoxic conditions. Geochim. Cosmochim. Acta 59, 367-3377. https://doi.org/10.1016/0016-7037(95)00217-N
  • 51. Harwood, J.L., 2006. Membrane Lipids in Algae. In: Siegenthaler, P.-A., Murata, N. (Eds.), Lipids in Photosynthesis: Structure, Function and Genetics. Advances in Photosynthesis and Respiration, vol 6. Springer, Dordrecht, 53-64. https://doi.org/10.1007/0-306-48087-5_3
  • 52. HELCOM, 2018. Input of nutrients by the seven biggest rivers in the Baltic Sea region. Balt. Sea Environ. Proc. No. 161, 31. https://www.helcom.fi/wp-content/uploads/2019/08/BSEP163.pdf.
  • 53. Helms, J.R., Stubbins, A., Ritchie, J.D., Minor, E.C., Kieber, D.J., Mopper, K., 2008. Absorption spectral slopes and slope ratios asindicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 53, 955-969. https://doi.org/10.4319/lo.2008.53.3.0955647
  • 54. Hunter, K.A., 1997. Chemistry of the sea-surface microlayer. In: Liss, P.S., Duce, R.A. (Eds.), The sea surface and global change. Cambridge Univ. Press., 287-320.
  • 55. Johannessen, S.C., Miller, W.L., 2001. Quantum yield for the photochemical production of dissolved inorganic carbon in seawater. Mar. Chem. 76, 271-283. https://doi.org/10.1016/S0304-203(01)00067-6
  • 56. Kowalczuk, P., Stedmon, C.A., Markager, S., 2006. Modeling absorption by CDOM in the Baltic Sea from season, salinity and chlorophyll. Mar. Chem. 101, 1-11. https://doi.org/10.1016/j.marchem.2005.12.005
  • 57. Kruk-Dowgiallo, L., 1996. The role of the filamentous brown algae in the degradation of the underwater meadows the Gulf of Gdańsk. Oceanol. Stud. 25, 125-135.
  • 58. Larsson, U., Elmgren, R., Wulff, F., 1985. Eutrophication and the Baltic sea: Causes and consequences. Ambio 14, 9-14.
  • 59. Lei, X., Pan, J., Devlin, A.T., 2020. Variations of the Absorption of Chromophoric Dissolved Organic Matter in the Pearl River Estuary. In Estuaries and Coastal Zones-Dynamics and Response to Environmental Changes. IntechOpen. https://www.intechopen.com/chapters/70692
  • 60. Liss, P.S., 1975. Chemistry of the sea surface microlayer. In: Riley, J.P., Skirrow, G. (Eds.), Chemical Oceanography, vol. 2. Academic Press, London, U.K., 193-244.
  • 61. Liss, P.S., Duce, R.A. (Eds.), 1997, The Sea Surface and Global Change. Cambridge Univ. Press, New York, 519 pp. https://doi.org/10.1017/CBO9780511525025
  • 62. Loiselle, S.A., Bracchini, L., Dattilo, A.M., Ricci, M., Tognazzi, A., Cózar, A., Rossi, C., 2009. Optical characterization of chromophoric dissolved organic matter using wavelength distribution of absorption spectral slopes. Limnol. Oceanogr. 54, 590-597. https://doi.org/10.4319/lo.2009.54.2.0590
  • 63. Maksymowska, D., Richard, P., Piekarek-Jankowska, H., Riera, P., 2000. Chemical and isotopic composition of the organic matter sources in the Gulf of Gdansk (Southern Baltic Sea). Estuar. Coast. Shelf Sci. 51, 585-598. https://doi.org/10.1006/ecss.2000.0701
  • 64. Marcinek, S., Santinelli, C., Cindrić, A.M., Evangelista, V., Gonnelli, M., Layglon, N., Mounier, S., Lenoble, V., Omanovi ́c, D., 2020. Dissolved organic matter dynamics in the pristine Krka River estuary (Croatia). Mar. Chem. 225, 103848. https://doi.org/10.1016/j.marchem.2020.103848
  • 65. Marić, D., Frka, S., Godrijan, J., Tomažić, I., Penezić, A., Djakovac, T., Vojvodić, V., Precali, R., Gašparović, B., 2013. Organic matter production during late summer-winter period in a temperate sea. Cont. Shelf Res. 55, 52-65. https://doi.org/10.1016/j.csr.2013.01.008
  • 66. Mayer, K.J., Wang, X., Santander, M.V., Mitts, B.A., Sauer, J.S., Sultana, C.M., Cappa, C.D., Prather, K.A., 2020. Secondary marine aerosol plays a dominant role over primary sea spray aerosol in cloud formation. ACS Cent. Sci. 6, 2259-2266. https://doi.org/10.1021/acscentsci.0c00793
  • 67. Mazur-Marzec, H., Krężel, A., Kobos, J., Pliński, M., 2006. Toxic Nodularia spumigena blooms in the coastal waters of the Gulf of Gda ́nsk: a ten-year survey. Oceanologia 48 (2), 255-273.
  • 68. Murphy, K.R., Butler, K.D., Spencer, R.G.M., Stedmon, C.A., Boehme, J.R., Aiken, G.R., 2010. Measurement of dissolved organic matter fluorescence in aquatic environments: An interlaboratory comparison. Environ. Sci. Technol. 44, 9405-9412. https://doi.org/10.1021/es102362t
  • 69. Mustaffa, N.I.H., Ribas-Ribas, M., Banko-Kubis, H.M., Wurl, O., 2020. Global reduction of in situ CO2 transfer velocity by natural surfactants in the sea-surface microlayer. Proc. R. Soc. A 476, 20190763. https://doi.org/10.1098/rspa.2019.0763
  • 70. Novak, T., Godrijan, J., Pfannkuchen, D.M., Djakovac, T. Mlakar, M., Baricevic, A., Tanković, M.S., Gašparović, B., 2018. Enhanced dissolved lipid production as a response to the sea surface warming. J. Mar. Sys. 180, 289-298. https://doi.org/10.1016/j.jmarsys.2018.01.006
  • 71. Novak, T., Godrijan, J., Pfannkuchen, D.M., Djakovac, T., Medić, N., Ivančić, I., Mlakar, M., Gašparović, B., 2019. Global warming and oligotrophication lead to increased lipid production in marine phytoplankton. Sci. Total Environ. 668, 171-183. https://doi.org/10.1016/j.scitotenv.2019.02.372
  • 72. Obernosterer, I., Catala, P., Lami, R., Caparros, J., Ras, J., Bricaud, A., Dupuy, C., Van Wambeke, F., Lebaron, P., 2008. Biochemical characteristics and bacterial community structure of the sea surface microlayer in the South Pacific Ocean. Biogeosciences 5, 693-705. https://doi.org/10.5194/bg-5-93-00
  • 73. Osburn, C.L., Del Vecchio, R., Boyd, T.J., 2014. Physicochemical effects on dissolved organic matter fluorescence in natural waters. In: Coble, P.G., Lead, J., Baker, A., Reynolds, D.M., Spencer, R.G.M. (Eds.), Aquatic Organic Matter Fluorescence. Cambridge Univ. Press, New York, 233-277.
  • 74. Parlanti, E., Wörz, K., Geoffroy, L., Lamotte, M., 2000. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org. Geochem. 31, 1765-1781. https://doi.org/10.1016/S0146-6380(00)00124-8
  • 75. Parrish, C.C., 1988. Dissolved and particulate marine lipid classes: a review. Mar. Chem. 23 (1—2), 17-40. https://doi.org/10.1016/0304-4203(88)90020-85
  • 76. Parrish, C.C., Abrajano, T.A., Budge, S.M., Helleur, R.J., Hudson, E.D., Pulchan, K., Ramos, C., 2000. Lipid and Phenolic Biomarkers in Marine Ecosystems: Analysis and Applications. In: Wangersky, P.J. (Ed.), Marine Chemistry. The Handbook of Environmental Chemistry, vol 5D. Springer, Berlin, Heidelberg https://doi.org/10.1007/10683826_8
  • 77. Pastuszak, M., Stålnacke, P., Pawlikowski, K., Witek, Z., 2012. Response of Polish rivers (Vistula, Oder) to reduced pressure from point sources and agriculture during the transition period (1988—2008). J. Mar. Sys. 94, 157-173. https://doi.org/10.1016/j.jmarsys.2011.11.017
  • 78. Patel, A.B., Shaikh, S., Jain, K.R., Desai, C., Madamwar, D., 2020. Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front. Microbiol. 11, 562813. https://doi.org/10.3389/fmicb.2020.562813
  • 79. Pȩdziński, J., Witak, M., 2019. Evidence of cultural eutrophication of the Gulf of Gda ́nsk based on diatom analysis. Oceanol. Hydrobiol. Stud. 48, 247-261. https://doi.org/10.2478/ohs-2019-0022
  • 80. Penezić, A., Gašparović, B., Burić, Z., Frka, S., 2010. Distribution of marine lipid classes in salty Rogoznica Lake (Croatia). Estuar. Coast. Shelf Sci. 86, 625-636. https://doi.org/10.1016/j.ecss.2009.11.030
  • 81. Penezić, A., Milinković, A., Bakija Alempijević, S., Žužul, S., Frka, S., 2021. Atmospheric deposition of biologically relevant trace metals in the eastern Adriatic coastal area. Chemosphere 283, 131178. https://doi.org/10.1016/j.chemosphere.2021.131178
  • 82. Pereira, R, Schneider-Zapp, K, Upstill-Goddard, RC., 2016. Surfactant control of gas transfer velocity along an offshore coastal transect: results from a laboratory gas exchange tank. Biogeosciences 13, 3981-3989. https://doi.org/10.5194/bg-13-3981-2016
  • 83. Piskozub, J., Drozdowska, V., Irczuk, M., 1998. A water Raman extinction lidar system for detecting thin oil spills: preliminary results of field tests. Oceanologia 40 (1), 3-10.
  • 84. Reinthaler, T., Sintes, E., Herndl, G.J., 2008. Dissolved organic matter and bacterial production and respiration in the sea-surface microlayer of the open Atlantic and the western mediterranean sea. Oceanogr. 53 (1), 122-136. https://doi.org/10.4319/lo.2008.53.1.0122
  • 85. Ribas-Ribas, M., Mustaffa, N.I.H., Rahlff, J., Stolle, C., Wurl, O., 2017. Sea surface scanner (S3): A catamaran for high-resolution measurements of biogeochemical properties of the sea Surface microlayer. J. Atmos. Ocean. Technol. 34, 1433-1448. https://doi.org/10.1175/JTECH-D-17 0017.1
  • 86. Rickard, P.C., Uher, G., Upstill-Goddard, R.C., Frka, S., Mustaffa, N.I.H., Banko-Kubis, H.M., Cvitešić Kušan, A., Gašparović, B., Stolle, C., Wurl, O., Ribas-Ribas, M., 2019. Reconsideration of seawater surfactant activity analysis based on an inter-laboratory comparison study. Mar. Chem. 208, 103-111. https://doi.org/10.1016/j.marchem.2018.11.012
  • 87. Rickard, P.C., Uher, G., Upstill-Goddard, R.C., 2022. Photoreactivity of surfactants in the sea-surface microlayer and subsurface water of the Tyne estuary, UK. Geophys. Res. Lett. 49 (4), e2021GL095469. https://doi.org/10.1029/2021GL095469
  • 88. Robinson, T.B., Wurl, O., Bahlmann, E., Jürgens, K., Stolle, C., 2019. Rising bubbles enhance the gelatinous nature of the air—sea interface. Limnol. Oceanogr. 64, 2358-2372. https://doi.org/10.1002/lno.11188
  • 89. Romankevich, E.A., 1984. Geochemistry of Organic Matter in the Ocean. Springer Berlin, Heidelberg, 334.
  • 90. Rontani, J.F., Belt, S.T., 2020. Photo- and autoxidation of unsaturated algal lipids in the marine environment: An overview of processes, their potential tracers, and limitations. Org. Geochem. 139, 103941. https://doi.org/10.1016/j.orggeochem.2019.103941
  • 91. Ryba, A.S., Burgess, R.M., 2002. Effects of sample preparation on the measurement of organic carbon, hydrogen, nitrogen, sulfur and oxygen concentrations in marine sediments. Chemosphere 48, 139-147. https://doi.org/10.1016/s0045-6535(02)00027-9
  • 92. Sabbaghzadeh, B., Upstill-Goddard, R.C., Beale, R., Pereira, R., Nightingale, P.D., 2017. The Atlantic Ocean surface microlayer from 50°N to 50°S is ubiquitously enriched in surfactants at wind speeds up to 13 m s−1. Geophys. Res. Lett. 44, 2852-2858. https://doi.org/10.1002/2017GL072988
  • 93. Salter, M.E., Upstill-Goddard, R.C., Nightingale, P.D., Archer, S.D., Blomquist, B., Ho, D.T., Huebert, B., Schlosser, P., Yang, M., 2011. Impact of an artificial surfactant release on air-sea gas fluxes during Deep Ocean Gas Exchange Experiment II. J. Geophys. Res. Oceans 116, C11016. https://doi.org/10.1029/2011JC007023
  • 94. Santos-Echeandía, J., Caetano, M., Brito, P., Canario, J., Vale, C., 2012. The relevance of defining trace metal baselines in coastal waters at a regional scale: The case of the Portuguese coast (SW Europe). Mar. Environ. Res. 79, 86-99. https://doi.org/10.1016/j.marenvres.2012.05.010
  • 95. Sargent, J.R., Lee, R.F., Nevenzel, J.C., 1976. Marine waxes. In: Kolattukudy, P.E. (Ed.), Chemistry and Biochemistry of Natural Waxes. Elsevier, Amsterdam, 49-91.
  • 96. Schiewer, U., Schernewski, G., 2002. Baltic Coastal Ecosystem Dynamics and Integrated Coastal Zone Management. In: Ass, E.-P. (Ed.), Littoral 2002, Proc. 6th International Symposium, Porto 22—26.9.2002. Univ. Porto, 115-123.
  • 97. Schneider-Zapp, K., Salter, M.E., Mann, P.J., Upstill-Goddard, R.C., 2013. Technical Note: Comparison of storage strategies of sea surface microlayer samples. Biogeosciences 10, 4927-4936. https://doi.org/10.5194/bg-10-4927-2013
  • 98. Sharma, K.K., Schuhmann, H., Schenk, P.M., 2012. High lipid induction in microalgae for biodiesel production. Energies 5, 1532-1553. https://doi.org/10.3390/en5051532
  • 99. Stedmon, C.A., Markager, S., Kaas, H., 2000. Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters. Estuar. Coast. Shelf Sci. 51, 267-278. https://doi.org/10.1006/ecss.2000.0645
  • 100. Stedmon, C.A., Markager, S., Bro, R., 2003. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem. 82, 239-254. https://doi.org/10.1016/S0304-4203(03)00072-0
  • 101. Stefan, R.L., Szeri, A.J., 1999. Surfactant scavenging and Surface deposition by rising bubbles. J. Colloid Interface Sci. 212, 1-13. https://doi.org/10.1006/jcis.1998.6037
  • 102. Stolle, C., Nagel, K., Labrenz, M., Jürgens, K., 2010. Succession of the sea-surface microlayer in the coastal Baltic Sea under natural and experimentally induced low-wind conditions. Biogeosciences 7, 2975-2988. https://doi.org/10.5194/bg-7-2975-2010
  • 103. Stolle, C., Ribas-Ribas, M., Badewien, T.H., Barnes, J., Carpenter, L.J., et al., 2020. The Milan Campaign: Studying diel light effects on the air-sea interface. Bull. Am. Meteorol. Soc. 101, 146-166. https://doi.org/10.1175/BAMS-D-17-0329.1
  • 104. Szymczak-Żyła, M., Krajewska, M., Witak, M., Ciesielski, T.M., Ardelan, M.V., Jenssen, B.M., Goslar, T., Winogradow, A., Filipkowska, A., Lubecki, L., Zamojska, A., Kowalewska, G., 2019. Present and Past-Millennial Eutrophication in the Gulf of Gdańsk (Southern Baltic Sea). Paleoceanogr. Paleoclimatology 34, 136-152. https://doi.org/10.1029/2018PA003474
  • 105. Tank, S.E., Lesack, L.F.W., Gareis, J.A.L., Osburn, C.L., Hesslein, R.H., 2011. Multiple tracers demonstrate distinct sources of dissolved organic matter in lakes of the mackenzie delta, western canadian arctic. Limnol. Oceanogr. 56 (4), 1297-1309. https://doi.org/10.4319/lo.2011.56.4.1297
  • 106. Triesch, N., van Pinxteren, M., Frka, S., Stolle, C., Spranger, T., Hoffmann, E.H., Gong, X., Wex, H., Schulz-Bull, D., Gašparović, B., Herrmann, H., 2021. Concerted measurements of lipids in seawater and on submicron aerosol particles at the Cape Verde Islands: biogenic sources, selective transfer and high enrichments. Atmos. Chem. Phys. 21, 4267-4283. https://doi.org/10.5194/acp-21-4267-2021
  • 107. Tsai, W.-T., Lui, K.-K., 2003. An assessment of the effects of seasurface surfactant on global aatmosphere-ocean CO2 flux. J. Geophys. Res. 108, 3127-3143. https://doi.org/10.1029/2000JC000740
  • 108. Van Pinxteren, M., Barthel, S., Fomba, K.W., Müller, K., Von Tümpling, W., Herrmann, H., Thomsen, L., 2017. The influence of environmental drivers on the enrichment of organic carbon in the sea surface microlayer and in submicron aerosol particles—measurements from the Atlantic Ocean. Elementa: Science of the Anthropocene 5, 35. https://doi.org/10.1525/elementa.225
  • 109. Williams, P.M., Carlucci, A.F., Henrichs, S.M., Van Fleet, E.S., Horrigan, S.G., Reid, F.M.H., Robertson, K.J., 1986. Chemical and microbiological studies of sea-surface films in the Southern Gulf of California and off the West Coast of Baja California. Mar. Chem. 19, 17-98. https://doi.org/10.1016/0304-4203(86)90033-2
  • 110. Woolf, D.K., 2005. Bubbles and their role gas exchange. In: Liss, P.S., Duce, R.A. (Eds.), The Sea Surface and Global Change. Cambridge Univ. Press, U. K, 173-205.
  • 111. Wurl, O., Obbard, J.P., 2004. A review of pollutants in the sea-surface microlayer (SML): A unique habitat for marine organisms. Mar. Pollut. Bull. 48, 1016-1030. https://doi.org/10.1016/j.marpolbul.2004.03.016
  • 112. Wurl, O., Miller, L., Röttgers, R., Vagle, S., 2009. The distribution and fate of surface-active substances in the sea-surface microlayer and water column. Mar. Chem. 115, 1-9. https://doi.org/10.1016/j.marchem.2009.04.007
  • 113. Wurl, O., Wurl, E., Miller, L., Johnson, K., Vagle, S., 2011. Formation and global distribution of sea-surface microlayers. Biogeosciences 8, 121-135. https://doi.org/10.5194/bg-8-121-2011
  • 114. Wurl, O., Ekau, W., Landing, W.M., Zappa, C.J., 2017. Sea Surface microlayer in a changing ocean — A perspective. Elem. Sci. Anthropocene 5, 31. https://doi.org/10.1525/elementa.228
  • 115. Zhang, Z., Liu, L., Liu, C., Cai, W., 2003. Studies on the sea surface microlayer: II. The layer of sudden change of physical and chemical properties. J. Colloid Interf. Sci. 264, 148-159. https://doi.org/10.1016/S0021-9797(03)00390-4
  • 116. Zhang, Y., Liu, X., Osburn, C.L., Wang, M., Qin, B., Zhou, Y., 2013a. Photobleaching Response of Different Sources of Chromophoric Dissolved Organic Matter Exposed to Natural Solar Radiation Using Absorption and Excitation-Emission Matrix Spectra. PLoS One 8, e77515. https://doi.org/10.1371/journal.pone.0077515
  • 117. Zhang, Y., Liu, X., Wang, M., Qin, B., 2013b. Compositional differences of chromophoric dissolved organic matter derived from phytoplankton and macrophytes. Org. Geochem. 55, 26-37. https://doi.org/10.1016/j.orggeochem.2012.11.007
  • 118. Zhao, J., Cao, W., Xu, Z., Ai, B., Yang, Y., Jin, G., Wang, G., Zhou, W., Chen, Y., Chen, H., Sun, Z., 2018. Estimating CDOM concentration in highly turbid estuarine coastal waters. J. Geophys. Res.-Oceans 123, 5856-5873. https://doi.org/10.1029/2018JC013756
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3442a366-d6bd-4939-a934-afa310bc0bbb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.