Warianty tytułu
Języki publikacji
Abstrakty
Epilepsy is a neurological disorder affecting more than 50 million individuals in the world. Analysis of the electroencephalogram (EEG) is a powerful tool to assist neurologists for diagnosis and treatment. In this paper a new feature extraction method based on empirical mode decomposition (EMD) is proposed. The EEG signal is decomposed into intrinsic mode functions (IMFs) by the EMD algorithm and four statistical parameters are calculated over these IMFs constituting the input feature vector to be fed to a multilayer perceptron neural network (MLPNN) classifier. Experimental results carried out on the publicly available Bonn dataset show that an accurate classification rate of 100% is achieved in the discrimination between normal and ictal EEG, and an accuracy of 97.7% is reached in the classification of interictal and ictal EEG signals. Our results are equivalent or outperform recent studies published in the literature.
Czasopismo
Rocznik
Tom
Strony
285--291
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
- LRES Lab., Université 20 Aoůt 1955 – Skikda, 21000, Algeria, djemili_rafik@yahoo.fr
autor
- PI:MIS Lab., Université du 08 Mai 1945 – Guelma, 24000, Algeria
autor
- LASA Lab., Université Badji Mokhar, Annaba, Algeria
Bibliografia
- [1] Mc Sharry PE, He T, Smith LA, Tarassenko L. Linear and nonlinear methods for automatic seizure detection in scalp electro-encephalogram recordings. Med Biol Eng Comput 2002;40:447–61.
- [2] Carney PR, Myers S, Geyer JD. Seizure prediction: methods. Epilepsy Behav 2011;22:S94–101.
- [3] Acharya UR, Tree SV, Swapna G, Martis RJ, Suri JS. Automated EEG analysis of epilepsy: a review. Knowl Based Syst 2013;45:147–65.
- [4] Liu A, Hahn JS, Heldt GP, Coen RW. Detection of neonatal seizures through computerized EEG analysis. Electroencephalogr Clin Neurophysiol 1992;82:30–7.
- [5] Subasi A, Gursoy MI. EEG signal classification using PCA, ICA LDA and support vector machines. Expert Syst Appl 2010;37(12):8659–86.
- [6] Polat K, Gunes S. Classification of epileptiform EEG using a hybrid systems based on decision tree classifier and fast Fourier transform. Appl Math Comput 2007;187(2):1017–26.
- [7] Adeli H, Zhou Z, Dadmehr N. Analysis of EEG records in an epileptic patient using wavelet transform. J Neurosci Methods 2003;123(1):69–87.
- [8] Pachori RB, Sircar P. EEG signal analysis using FB expression and second-order linear TVAR process. Signal Process 2008;88:415–20.
- [9] Kumar Y, Dewal ML, Anand RS. Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. Signal Image Video Process 2010;1–12.
- [10] Ocak H. Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst Appl 2009;36(2):2027–36.
- [11] Acharya UR, Viinitha Sree S, Chattopadhyay S, Wenwei YU, Alvin APC. Application of recurrence quantification analysis for the automated identification of epileptic EEG signals. Int J Neural Syst 2011;21(3):1–12.
- [12] Guler NF, Ubeyli ED, Gular I. Recurrent neural networks employing Lyapunov exponents for EEG signal classification. Expert Syst Appl 2005;29:506–14.
- [13] Lehnertz K, Elger CE. Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neural complexity loss. Electroencephalogr Clin Neurophysiol 1995;95(2):108–17.
- [14] Kannathal N, Choo ML, Acharya UL, Sadasivan PK. Entropies for detection of epilepsy in EEG. Comput Methods Progr Biomed 2005;83(3):187–94.
- [15] Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond 1998;454:903–95.
- [16] Orosco L, Laciar E, Correa AG, Torres A, Graffigna JP. An epileptic seizures detection algorithm based on the empirical mode decomposition of EEG. Conf. Proc. IEEE Eng. Med. Biol. Soc.; 2009.
- [17] Oweis RJ, Abdulhay EW. Seizure classification in EEG signals utilizing Hilbert–Huang transform. BioMed Eng Online 2011;10(38).
- [18] Bajaj V, Pachori RB. Epileptic seizure detection based on the instantaneous area of analytic mode functions of EEG signals. Biomed Eng Lett 2013;3:17–21.
- [19] Li S, Zhou W, Yuan Q, Geng S, Cai D. Feature extraction and recognition of ictal EEG using EMD and SVM. Comput Biol Med 2013;43:807–16.
- [20] Bishop CM. Neural networks for pattern recognition. Oxford: Oxford University Press; 1995.
- [21] Andrzejak RG, Lehnertz K, Monmann F, Rieke C, David P, Elger CE. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev 2001;64(6):061907.
- [22] Bajaj V, Pachori RB. Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Trans Inf Technol Biomed 2012;16(6):1135–42.
- [23] Flandrin P, Rilling G, Goncalves P. Empirical mode decomposition as a filter bank. IEEE Signal Process Lett 2004;11(2):112–4.
- [24] Lin H. Identification of spinal deformity classification with total curvature analysis and artificial neural network. IEEE Trans Biomed Eng 2008;55(1):376–82.
- [25] Srinivasan V, Eswaran C, Sriraam N. Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans Inf Technol Biomed 2007;11(3):288–95.
- [26] Acharya UR, Faust O, Kadri NA, Suri JJ, Yu W. Automated identification of normal and diabetes heart rate signals using nonlinear measures. Comput Biol Med 2013;43 (10):1523–9.
- [27] Dipietro L, Sabatini AM, Dario P. Artificial neural network model of the mapping between electromyographic activation and trajectory patterns in free-arm movements. Med Biol Eng Comput 2003;41:124–32.
- [28] Guo L, Riveero D, Pazaos A. Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J Neurosci Methods 2010;193:156–63.
- [29] Ubeyli ED. Combined neural network model employing wavelet coefficients for EEG signals classification. Digital Signal Process 2009;19:297–308.
- [30] Dhiman R, Saini JS, Priyanka. Genetic algorithms tuned expert model for classification of epileptic seizures from EEG signatures. Appl Soft Comput 2014;19:8–17.
- [31] Xiaojing G, Xiaopei W, Dexiang Z. Motor imagery EEG detection by empirical mode decomposition. Proc. IEEE Int. Joint Conf. Neural Networks (IJCNN); 2008.
- [32] Neural Network Toolbox; 2010, Available from: http://www.mathworks.com/help/toolbox/nnet/ nnet_product_page.html.
- [33] Tzallas A, Tsipouras M, Fotiadis D. Automatic seizure detection based on time frequency analysis and artificial neural network. Comput Intell Neurosci 2007;1380510.
- [34] Orhan U, Hekim M, Ozer M. EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst Appl 2011;38:13475–81.
- [35] Chen G. Automatic EEG seizure detection using dual-tree complex wavelet Fourier features. Expert Syst Appl 2014;41:2391–4.
- [36] Nicolaou N, Georgiou J. Detection of epileptic electroencephalogram based on permutation entropy and support vector machine. Expert Syst Appl 2012;39:202–9.
- [37] Kumar Y, Dewal ML, Anand RS. Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine. Neurocomputing 2014;133:271–9.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-33f746ec-d7b0-4258-9539-97f497d0aa57