Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 69, no. 2 | 175--190
Tytuł artykułu

Strength and crack propagation analysis of layered backfill based on energy theory

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The strength of backfill is greatly influenced by its inclination angle and interlayer concentration. In order to study the influence of inclination angle and interlayer mass concentration on the strength of backfill, a group of layered cemented backfill with cement-sand ratio of 1:4, interlayer mass concentration of 66%, 67% and 68% and inclination angles of 0°, 10°, 20° and 30° were prepared by using tailings as aggregate. The uniaxial compression test was carried out to analyse the effect of interlayer mass concentration and inclination angle on layered cemented backfill. The crack propagation and energy change law of the specimen during compression were analysed by J-integral and energy conservation law. The relationship between the crack initiation and propagation and strain energy of two representative three-layer backfill specimens was analysed by numerical modelling. The results show that the increase in the layer number and the inclination angle of the backfill can weaken the strength of the backfill. In a certain range of inclination angles, the weakening coefficient of the backfill caused by the inclination angle is very consistent with the cosine value of the corresponding angle. Due to the release of crack energy and the existence of interface J integral, the uniaxial compressive strength of different mass concentration backfill is different at various positions. When the displacement reaches a certain value, the crack and strain energy no longer increase.
Wydawca

Rocznik
Strony
175--190
Opis fizyczny
Bibliogr. 37 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Kunming University of Science and Technology, Faculty of Land and Resources Engineering Kunming 650093, China
autor
  • Kunming University of Science and Technology, Faculty of Land and Resources Engineering Kunming 650093, China, kmustsw@qq.com
  • Yunnan Key Laboratory of Sino-German Blue Mining and Utilization of Special Underground Space , Kunming 650093, China
  • Kunming University of Science and Technology, Faculty of Land and Resources Engineering Kunming 650093, China
autor
  • Kunming University of Science and Technology, Faculty of Land and Resources Engineering Kunming 650093, China
autor
  • Kunming University of Science and Technology, Faculty of Land and Resources Engineering Kunming 650093, China
autor
  • Kunming University of Science and Technology, Faculty of Land and Resources Engineering Kunming 650093, China
autor
  • Kunming University of Science and Technology, Faculty of Land and Resources Engineering Kunming 650093, China
  • University of Science and Technology Beijing, Beijing 100083; China
  • Yunnan Technology and Business University, Yanglin, Yunnan 651701, China
Bibliografia
  • [1] M. Sari, E. Yilmaz, T. Kasap, et al. Exploring the link between ultrasonic and strength behavior of cementitiousmine backfill by considering pore structure. Constr. Build. Mater. 370, 130588 (2023).DOI: https://doi.org/10.1016/j.conbuildmat.2023.130588.
  • [2] W. Sun, H.J. Wang, K.P. Hou, Control of waste rock-tailings paste backfill for active mining subsidence areas.J. Clean. Prod. 171, 567-579 (2018). DOI: https://doi.org/10.1016/j.jclepro.2017.09.253.
  • [3] H .Y. Cheng, J. Liu, S.C. Wu, XQ Zhang, Fluidization Analysis of Thickening in the Deep Cone for CementedPaste Backfill. Adv. Mater. 27, 6285981 (2020). DOI: https://doi.org/10.1155/2020/6285981.
  • [4] H . Cao, Q. Gao, X.Z. Zhang, et al., Research Progress and Development Direction of Filling Cementing Materialsfor Filling Mining in Iron Mines of China. Gels. 3, 192 (2022).DOI: https://doi.org/10.3390/gels8030192.
  • [5] D.L. Gong, X.G. Yang, S.C. Qi, et al., Coupled chemo-hydro-mechanical effects in one-dimensional accretion ofcemented mine fills. Eng. Geol. 267, 105495 (2020). DOI: https://doi.org/10.1016/j.enggeo.2020.105495.
  • [6] X .B. Li, W. Wei, B. Zhao, Construction and Quantitative Analysis of Evaluation Index System on Stability ofFilling System. J. Eng. Sci. Technol. Rev. 31 (31), 43-47 (2013).http://www.kjdb.org/CN/10.3981/j.issn.1000-7857.2013.31.006.
  • [7] W. Sun, A.X. Wu, K.P. Hou, et al., Real-time observation of meso-fracture process in backfill body during minesubsidence using X-ray. CT under uniaxial compressive conditions. Constr. Build. Mater. 113, 153-162 (2016).DOI: https://doi.org/10.1016/j.conbuildmat.2016.03.050.
  • [8] J.J. Li, E. Yilmaz, S. Cao, Influence of industrial solid waste as filling material on mechanical and microstructuralcharacteristics of cementitious backfills. Constr. Build. Mater. 299, 124288 (2021).DOI: https://doi.org/10.1016/j.conbuildmat.2021.124288.
  • [9] T. Gao, W. Sun, Z. Liu, et al., Investigation on fracture characteristics and failure pattern of inclined layeredcemented tailings backfill. Constr. Build. Mater. 343, 128110 (2022).DOI: https://doi.org/10.1016/j.conbuildmat.2022.128110.
  • [10] Y .M. Wang, J.Y. Wu, H. Pu, et al., Effect of interface geometric parameters on the mechanical properties and damageevolution of layered cemented gangue backfill: Experiments and models. Constr. Build. Mater. 349, 128678(2022). DOI: https://doi.org/10.1016/j.conbuildmat.2022.128678.
  • [11] H .Z. Jiao, W.B. Yang, H.M. Shen, et al., Study on Multi-Layer Filling Treatment of Extra-Large Goaf and ItsUnderground Application. Materials 16, 5680 (2022). DOI: https://doi.org/10.3390/ma15165680.
  • [12] J.J. Li, E. Yilmaz, S. Cao, Influence of solid content, cement/tailings ratio and curing time on rheology and strengthof cemented tailings backfill. Minerals 10 (10), 922 (2020). DOI: https://doi.org/10.3390/min10100922.
  • [13] J. Wang, W.D. Song, S. Cao, et al., Mechanical properties and failure modes of stratified backfill under triaxialcyclic loading and unloading. Int. J. Min. Sci. Technol. 29, 809-814 (2019).DOI: https://doi.org/10.1016/j.ijmst.2018.04.001.
  • [14] X .S. Liu, J.G. Ning, Y.L. Tan, et al., Damage constitutive model based on energy dissipation for intact rock subjectedto cyclic loading. Int. J. Min. Sci. Technol. 85, 27-32 (2016).DOI: https://doi.org/10.1016/j.ijrmms.2016.03.003.
  • [15] Y .L. Tan, Q.H. Gu, J.G. Ning, et al., Uniaxial Compression Behavior of Cement Mortar and Its Damage-ConstitutiveModel Based on Energy Theory. Materials 12, 1309 (2019). DOI: https://doi.org/10.3390/ma12081309.
  • [16] W.D. Song, J. Wang, Y.Y. Tan, et al., Energy consumption and damage characteristics of layered filling undertriaxial addition-unloading. Int. J Min. Sci. Technol. 46 (05), 1050-1057 (2017).DOI: https://doi.org/10.13247/j.cnki.jcumt.000738.
  • [17] B . Han, S.Y. Zhang, W. Sun, Impact of Temperature on the Strength Development of the Tailing-Waste RockBackfill of a Gold Mine. Adv. Civ. Eng. Mater. 10 (1155), 4379606 (2019).DOI: https://doi.org/10.1155/2019/4379606.
  • [18] W. Sun, M.G. Jiang, K. Fan, Z. Liu, Determination and Application of Pressure Loss in Long Distance PipelineTransportation of Paste Slurry Based on Pipe Loop Experiment. Arch. Min. Sci. 67, 2, 223-237 (2022).DOI: https://doi.org/10.24425/ams.2022.141455.
  • [19] K .F. Lu, W. Sun, T. Gao, et al., Preparation of new copper smelting slag-based mine backfill material and investigationof its mechanical properties [J]. Constr. Build. Mater. 382, 131228 (2023).DOI: http://dx.doi.org/10.1016/j.conbuildmat.2023.131228.
  • [20] Z.Y. Li, W. Sun, T. Gao, et al., Experimental study on evolution of pore structure of inclined layered cementedtailings backfill based on X-ray CT. Constr. Build. Mater. 366, 130242 (2023).DOI: https://doi.org/10.1016/j.conbuildmat.2022.130242.
  • [21] T. Gao, W. Sun, Z.Y. Li, et al., Study on Shear Characteristics and Failure Mechanism of Inclined Layered Backfillin Mining Solid Waste Utilization. Minerals 12 (12), 1540 (2022). DOI: https://doi.org/10.3390/min12121540.
  • [22] H .Z. Jiao, W. Zhang, Y. Yang, et al., Static mechanical characteristics and meso-damage evolution characteristicsof layered backfill under the condition of inclined interface. Constr. Build. Mater. 366, 130113 (2023).DOI: https://doi.org/10.1016/j.conbuildmat.2022.130113.
  • [23] H .Z. Jiao, W.X. Zhang, Y.X. Yang, et al., Static mechanical characteristics and meso-damage evolution characteristicsof layered backfill under the condition of inclined interface. Constr. Build. Mater. 366, 130113 (2023).DOI: https://doi.org/10.1016/j.conbuildmat.2022.130113.
  • [24] J. Deng, B. Li, X.B. Li. et al., Analysis of factors and countermeasures of mining subsidence in Kaiyang PhosphorusMine. J. Cent. South Univ. Technol. 13, 733-737 (2006). DOI: https://doi.org/10.1007/s11771-006-0023-7.
  • [25] X .P. Song, J.B. Li, S. Wang, et al., Study of mechanical behavior and cracking mechanism of prefabricated fracturecemented paste backfill under different loading rates from the perspective of energy evolution. Constr. Build. Mater.361, 129737 (2022). DOI: https://doi.org/10.1016/j.conbuildmat.2022.129737.
  • [26] J. Wang, J.X. Fu, W.D. Song, et al., Mechanical properties, damage evolution, and constitutive model of rockencasedbackfill under uniaxial compression. Constr. Build. Mater. 285, 122898 (2021).DOI: https://doi.org/10.1016/j.conbuildmat.2021.122898.
  • [27] W.Y. Qi, J.X. Zhang, N. Zhou, et al., Mechanism by Which Backfill Body Reduces Amount of Energy Releasedin Deep Coal Mining. Shock and Vibration 14, 8253269 (2019).DOI: https://doi.org/10.1155/2019/8253269.
  • [28] L . Liu, J. Xin, C.C. Qi, et al., KI-IL Song, Experimental investigation of mechanical, hydration, microstructureand electrical properties of cemented paste backfill. Constr. Build. Mater. 263, 120137 (2020).DOI: https://doi.org/10.1016/j.conbuildmat.2020.120137.
  • [29] S. Xiao, H.L. Wang, B. Liu, et al., The surface-forming energy release rate based fracture criterion for elastic-plasticcrack propagation. J. Mech. Phys. Solids. 84, 336-357 (2015).DOI: https://doi.org/10.1016/j.jmps.2015.08.011.
  • [30] T. Nishioka, S.S. Syano, T. Fujimoto, Concepts of Separated J-Integrals, Separated Energy Release Rates, and theComponent Separation Method of the J-Integral for Interfacial Fracture Mechanics. J. Appl. Mech. 70 (4), 505-516(2003). DOI: https://doi.org/10.1115/1.1576803.
  • [31] T. Nishioka, S.P. Shen, J.H. Yu, Dynamic J integral, separated dynamic J integral and component separation methodfor dynamic interfacial cracks in piezoelectric bimaterials. Int. J. Fract. 122, 101-130 (2003).DOI: https://doi.org/10.1023/b:frac.0000005768.61301.a7.
  • [32] L .K. Lu, Z.L. Liu, Z. Zhuang, The physical meanings of two incremental-J-integral-based fracture criteria forcrack growth in elastic-plastic materials. Eng. Fract. Mech. 259, 108106 (2022).DOI: https://doi.org/10.1016/j.engfracmech.2021.108106.
  • [33] C.R. Chen, Analysis on the Energy Release Rate Considering the Difference Between J-Integrals With and Withouta Crack [J]. Applied J. Math. Mech. 39 (10), 1172-1179 (2018).DOI: https://doi.org/10.21656/1000-0887.380191.
  • [34] Z. Chen, R.D. Adams, Lucas F.M. da Silva, Prediction of crack initiation and propagation of adhesive lap jointsusing an energy failure criterion. Eng. Fract. Mech. 78 (6), 990-1007 (2011).DOI: https://doi.org/10.1016/j.engfracmech.2010.12.004.
  • [35] A. Pirondi, C.D. Donne, Characterisation of ductile mixed-mode fracture with the crack-tip displacement vector.Eng. Fract. Mech. 68 (12), 1385-1402 (2001). DOI: https://doi.org/10.1016/S0013-7944(01)00023-6.
  • [36] W. Liu, S.L. Xu, Q.H. Li, Experimental study on fracture performance of ultra-high toughness cementitious compositeswith J-integral. Eng. Fract. Mech. 96, 656-666 (2012). DOI: https://doi.org/10.1016/j.engfracmech.2012.09.007.
  • [37] W. Sun, T. Gao, J.G. Zhao, et al., Research on fracture behavior and reinforcement mechanism of fiber-reinforcedlocally layered backfill: Experiments and models. Constr. Build. Mater. 366, 130186 (2023).DOI: https://doi.org/10.1016/j.conbuildmat.2022.130186.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-33cb58ad-547c-4da7-bf7a-dc1a6b8f49f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.