Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2021 | Vol. 69, no. 1 | 65--75
Tytuł artykułu

The stability of poro elastic wave equations in saturated porous media

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Poro-elastic wave equations are one of the fundamental problems in seismic wave exploration and applied mathematics. In the past few decades, elastic wave theory and numerical method of porous media have developed rapidly. However, the math ematical stability of such wave equations have not been fully studied, which may lead to numerical divergence in the wave propagation simulation in complex porous media. In this paper, we focus on the stability of the wave equation derived from Tuncay’s model and volume averaging method. By analyzing the stability of the frst-order hyperbolic relaxation system, the mathematical stability of the wave equation is proved for the frst time. Compared with existing poro-elastic wave equations (such as Biot’s theory), the advantage of newly derived equations is that it is not necessary to assume uniform distribution of pores. Such wave equations can spontaneously incorporate complex microscale pore/fracture structures into large-scale media, which is critical for unconventional oil and gas exploration. The process of proof and numerical examples shows that the wave equations are mathematically stable. These results can be applied to numerical simulation of wave feld in reservoirs with pore/fracture networks, which is of great signifcance for unconventional oil and gas exploration.
Wydawca

Czasopismo
Rocznik
Strony
65--75
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
autor
  • Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, China, sunwt@tsinghua.edu.cn
  • School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
autor
  • School of Geoscience and Info-Physics, Central South University, Changsha 410083, China, jw-liu@csu.edu.cn
Bibliografia
  • 1. Anderson TB, Jackson R (1967) A fluid mechanical description of fluidized beds. Ind Eng Chem Fundam 6(4):527
  • 2. Avseth P, Mukerji T, Mavko G (2010) Quantitative seismic interpretation: applying rock physics tools to reduce interpretation risk. Cambridge University Press, Cambridge
  • 3. Bernabe Y (2009) Oscillating flow of a compressible fluid through deformable pipes and pipe networks: wave propagation phenomena. Pure Appl Geophys 166(5–7):969–994
  • 4. Bernabe Y (2009) Propagation of Biot slow waves in heterogeneous pipe networks: effect of the pipe radius distribution on the effective wave velocity and attenuation. J Geophys Res Solid Earth, vol 114
  • 5. Bernabe Y, Zamora M, Li M, Maineult A, Tang YB (2011) Pore connectivity, permeability, and electrical formation factor: a new model and comparison to experimental data. J Geophys Res Solid Earth, Vol 116
  • 6. Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164
  • 7. Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid 1. Low-frequency range. J Acoust Soc Am 28(2):168–178. https://doi.org/10.1121/1.1908239
  • 8. Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33(4):1482–1498
  • 9. Brie A, Pampuri F, Marsala A, Meazza O (1995) Shear sonic interpretation in gas-bearing sands. In: Paper read at SPE annual technical conference and exhibition
  • 10. Burridge R, Keller JB (1981) Poroelasticity equations derived from microstructure. J Acoust Soc Am 70(4):1140–1146
  • 11. Carcione JM, Cavallini F, Santos JE, Ravazzoli CL, Gauzellino PM (2004) Wave propagation in partially saturated porous media: simulation of a second slow wave. Wave Motion 39(3):227–240
  • 12. Carcione JM, Picotti S, Gei D, Rossi G (2006) Physics and seismic modeling for monitoring CO2 storage. Pure Appl Geophys 163(1):175–207
  • 13. Champoux Y, Allard JF (1991) Dynamic tortuosity and bulk modulus in air-saturated porous media. J Appl Phys 70(4):1975–1979
  • 14. Chapman M, Zatsepin SV, Crampin S (2002) Derivation of a microstructural poroelastic model. Geophys J Int 151(2):427–451
  • 15. De la Cruz V, Sahay PN, Spanos TJT (1993) Thermodynamics of porous-media. Proc R Soc Math Phys Sci 443(1917):247–255
  • 16. De la Cruz V, Spanos TJT (1983) Mobilization of Oil Ganglia. Aiche J 29(5):854–858
  • 17. De la Cruz V, Spanos TJT (1985) Seismic-wave propagation in a porous-medium. Geophysics 50(10):1556–1565
  • 18. Dutta NC, Ode H (1979) Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation (white model). 2. Results. Geophysics 44(11):1789–1805
  • 19. Dvorkin J, Mavko G, Nur A (1995) Squirt flow in fully saturated rocks. Geophysics 60(1):97–107
  • 20. Dvorkin J, Nur A (1993) Dynamic Poroelasticity—a Unified Model with the Squirt and the Biot Mechanisms. Geophysics 58(4):524–533
  • 21. Johnson DL (2001) Theory of frequency dependent acoustics in patchy-saturated porous media. J Acoust Soc Am 110(2):682–694. https://doi.org/10.1121/1.1381021
  • 22. Johnson DL, Koplik J, Dashen R (2006) Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J Fluid Mech 176:379–402
  • 23. Kelder O, Smeulders DM (1997) Observation of the Biot slow wave in water-saturated Nivelsteiner sandstone. Geophysics 62(6):1794–1796
  • 24. Kirchhoff G (1868) Ueber den Einfluss der Wärmeleitung in einem Gase auf die Schallbewegung. Ann Phys 210(6):177–193
  • 25. Liu JW, Yong WA (2016) Stability analysis of the Biot/squirt models for wave propagation in saturated porous media. Geophys J Int 204(1):535–543. https://doi.org/10.1093/gji/ggv463
  • 26. Mavko GM, Nur A (1979) Wave attenuation in partially saturated rocks. Geophysics 44(2):161–178
  • 27. Pride SR, Berryman JG (2003) Linear dynamics of double-porosity dual-permeability materials. I. Governing equations and acoustic attenuation. Phys Rev E 68(3):036603
  • 28. Pride SR, Gangi AF, Morgan FD (1992) Deriving the equations of motion for porous isotropic media. J Acoust Soc Am 92(6):3278–3290
  • 29. Sahay PN, Spanos TJTT, de la Cruz V (2001) Seismic wave propagation in inhomogeneous and anisotropic porous media. Geophys J Int 145(1):209–222
  • 30. Shields FD, Lee KP, Wiley WJ (1965) Numerical solution for sound velocity and absorption in cylindrical tubes. J Acoust Soc Am 37(4):724–729
  • 31. Slattery JC (1967) Flow of viscoelastic fluids through porous media. AIChE J 13(6):1066. https://doi.org/10.1002/aic.690130606
  • 32. Sun W, Ba J, Carcione JM (2016) Theory of wave propagation in partially saturated double-porosity rocks: a triple-layer patchy model. Geophys J Int 205(1):22–37
  • 33. Sun W, Xiong F, Ba J, Carcione JM (2018) Effects of ellipsoidal heterogeneities on wave propagation in partially saturated double-porosity rocks. Geophysics 83(3):71–81
  • 34. Sun W, Yang H (2003) Elastic wavefield calculation for heterogeneous anisotropic porous media using the 3-D irregular-grid finite-difference. Acta Mech Solida Sin 4(16):283–299
  • 35. Sun W, Yang H (2004) Seismic propagation simulation in complex media with non-rectangular irregular-grid finite-difference. Acta Mech Sin 20(3):299–306
  • 36. Tuncay K, Corapcioglu MY (1995) Effective stress principle for saturated fractured porous media. Water Resour Res 31(12):3103–3106
  • 37. Tuncay K, Corapcioglu MY (1996a) Body waves in poroelastic media saturated by two immiscible fluids. J Geophys Res Solid Earth 101(B11):25149–25159. https://doi.org/10.1029/96jb02297
  • 38. Tuncay K, Corapcioglu MY (1996b) Wave propagation in fractured porous media. Transp Porous Media 23(3):237–258
  • 39. Tuncay K, Corapcioglu MY (1997) Wave propagation in poroelastic media saturated by two fluids. J Appl Mech Trans Asme 64(2):313–320
  • 40. Whitaker S (1966) The equations of motion in porous media. Chem Eng Sci 21(3):291–300
  • 41. White JE (1975) Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics 40(2):224–232. https://doi.org/10.1190/1.1440520
  • 42. Yong WA (1999) Singular perturbations of first-order hyperbolic systems with stiff source terms. J Differ Equ 155(1):89–132
  • 43. Zwikker C, Kosten CW (1949) Sound absorbing materials. Elsevier, Amsterdam
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-33778374-3855-41f0-b655-22d153aade1b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.