Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2020 | Vol. 47, no.1 | 196--208
Tytuł artykułu

Increase in 14C dating accuracy of prehistoric skeletal remains by optimised bone sampling: Chronometric studies on eneolithic burials from Mikulin 9 (Poland) and Urziceni-Vada Ret (Romania)

Warianty tytułu
Konferencja
Conference proceedings of the 13th International Conference “Methods of absolute chronology” June 5-7th, 2019, Tarnowskie Gory, Poland
Języki publikacji
EN
Abstrakty
EN
In this research, sampling optimisation and modelling based thereon follow from the assumption that each human skeleton can be treated as a set of heterochronous carbon reservoirs capable of supplying at least an elementary sequence consisting of two 14C dates corresponding to the moment of birth (otic capsule) and that of demise (ribs), as well as an anthropologically defined lag between them. Two case studies demonstrate that the approach can raise the precision of 14C dates related to the death of the individuals. The benefits and main issues of this sampling strategy as well as the involved bioarchaeological conflict potential are taken under discussion.
Wydawca

Czasopismo
Rocznik
Strony
196--208
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
  • Fundacja Archeolodzy.org, ul. Bolesława Prusa 81/3i, 50-316 Wrocław, Poland
  • Institute of Archaeology, University of Wrocław, ul. Szewska 48, 50-137 Wrocław, Poland
  • Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
  • Poznań Radiocarbon Laboratory, Poznań Park of Science and Technology, ul. Rubież 46, 61-612 Poznań, Poland
  • 5 Department of Evolutionary Anthropology, University of Vienna, Althanstraße 14 1090 Wien, Austria
  • Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
  • Department of Anthropology, Hungarian Natural History Museum, Ludovika tér 2-6, 1083 Budapest, Hungary
  • Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
  • Department of Anthropology, Hungarian Natural History Museum, Ludovika tér 2-6, 1083 Budapest, Hungary
  • Satu Mare County Museum, Bd. Vasile Lucaciu 21, Satu Mare 440031, Romania
Bibliografia
  • 1. Alkass, K, Buchholz, BA, Druid, H, and Spalding, KL, 2011. Analysis of 14C and 13C in teeth provides precise birth dating and clues to geographical origin. Forensic Science International 209(1–3): 34–41, DOI: 10.1016/j.forsciint.2010.12.002.
  • 2. Ascough, P, Cook, G, and Dugmore, A, 2005. Methodological approaches to determining the marine radiocarbon reservoir effect. Progress in Physical Geography: Earth and Environment 29(4): 532–547, DOI: 10.1191/0309133305pp461ra.
  • 3. Barta, P, and Štolc, S, 2007. HBCO Correction: Its Impact on Archaeological Absolute Dating. Radiocarbon 49(2): 465–472, DOI: 10.1017/S0033822200042399.
  • 4. Bayliss, A, 2015. Quality in Bayesian chronological models in archaeology. World Archaeology 47(4): 677–700, DOI: 10.1080/00438243.2015.1067640.
  • 5. Brock, F, and Cook, GT, 2016. Forensic Radiocarbon Dating of Human Remains: The Past, the Present, and the Future. Archaeological and Environmental Forensic Science 1(1): 3–16, DOI: 10.1558/aefs.30715.
  • 6. Brock, F, Higham, T, and Ramsey, CB, 2010. Pre-screening techniques for identification of samples suitable for radiocarbon dating of poorly preserved bones. Journal of Archaeological Science 37(4): 855–865, DOI: 10.1016/j.jas.2009.11.015.
  • 7. Bronk Ramsey, C. 2008. Deposition models for chronological records. Quaternary Science Reviews 27(1–2): 42–60, DOI: 10.1016/j.quascirev.2007.01.019.
  • 8. Bronk Ramsey, C, (2009a). Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1): 337–36, DOI: 10.1017/ S0033822200033865.
  • 9. Bronk Ramsey, C, (2009b). Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51(3): 1023–1045, DOI: 10.1017/S0033822200034093.
  • 10. Buikstra, JE, and Ubelaker, DH, 1994. Standards for Data Collection from Human Skeletal Remains In: Proceedings of a Seminar at the Field Museum of Natural History. Arkansas Archeological Survey, Fayetteville.
  • 11. Calcagnile, L, Quarta, G, Cattaneo, C, and D’Elia, M, 2013. Determining 14C Content in Different Human Tissues: Implications for Application of 14C Bomb-Spike Dating in Forensic Medicine. Radiocarbon 55(2–3): 1845–1849, DOI: 10.1017/ S003382220004875X.
  • 12. Chmielewski, TJ, 2020. Aneks. Chronologia absolutna rozwoju kręgu Polgár na etapie środkowego eneolitu (epoki miedzi). Gdańskie Studia Archeologiczne 7: 21−37.
  • 13. Chmielewski, TJ, 2015. Chronology In: Pliszczyn, site 9. Eneolithic settlement complex in the Lublin region. Wydawnictwo i Pracownia Archeologiczna Profil-Archeo, Fundacja Nauki “Archaeologia Silesiae”: Pękowice-Wrocław 219–223.
  • 14. Cook, GT, Ainscough, LAN, and Dunbar, E, 2015. Radiocarbon Analysis of Modern Skeletal Remains to Determine Year of Birth and Death - a Case Study. Radiocarbon 57(3): 327–336, DOI: 10.2458/azu_rc.57.18394.
  • 15. Cook, GT, and MacKenzie, BR, 2014. Radioactive isotope analyses of skeletal materials in forensic science: a review of uses and potential uses. International Journal of Legal Medicine 128(4): 685–698, DOI: 10.1007/s00414-014-0970-8.
  • 16. Dudar, JC, Pfeiffer, S, and Saunders, SR, 1993. Evaluation of Morphological and Histological Adult Skeletal Age-at-Death Estimation Techniques Using Ribs. Journal of Forensic Sciences, 38(3): 677–68, DOI: 10.1520/JFS13455J.
  • 17. Dury, JPR, Eriksson, G, Fjellström, M, Wallerström, T, and Lidén, K, 2018. Consideration of Freshwater and Multiple Marine Reservoir Effects: Dating of Individuals with Mixed Diets from Northern Sweden. Radiocarbon 60(5): 1561–1585, DOI: 10.1017/RDC.2018.78.
  • 18. Fahy, GA, Deter, C, Pitfield, R, Miszkiewicz, JJ, and Mahoney, P, 2017. Bone deep: Variation in stable isotope ratios and histomorphometric measurements of bone remodelling within adult humans. Journal of Archaeological Science 87: 10–16, DOI: 10.1016/j.jas.2017.09.009.
  • 19. Fox, K, and Hawks, J, 2019. Use ancient remains more wisely. Nature, 572(7771), 581–58, DOI: 10.1038/d41586-019- 02516-5.
  • 20. Galimberti, M, Bronk Ramsey, C, and Manning, SW, 2004. Wiggle-match Dating of Tree-ring Sequences. Radiocarbon 46(2), 917–924.
  • 21. Geyh, MA, 2001. Bomb Radiocarbon Dating of Animal Tissues and Hair. Radiocarbon 43(2B): 723–730, DOI: 10.1017/ S0033822200041382.
  • 22. Goslar, T, Jankowski, M, Kośko, A, Lityńska-Zając, M, Włodarczak, P, and Żurkiewicz, D, 2018. Builders and Users of Ritual Centres, Yampil Barrow Complex: Studies of Diet Based on Stable Carbon and Nitrogen Isotope Composition. Baltic-Pontic Studies 22(1): 91–125, DOI: 10.1515/bps-2017-0023.
  • 23. Goslar, T, and Mądry, W. 1998. Using the Bayesian method to study the precision of dating by wiggle matching. Radiocarbon 40(1): 551–560.
  • 24. Hamilton, WD, and Krus, AM, 2018. The myths and realities Bayesian chronological modelling revealed. American Antiquity 83(2): 187–203, DOI: 10.1017/aaq.2017.57.
  • 25. Harvig, L, Frei, KM, Price, TD, and Lynnerup, N, 2014. Strontium Isotope Signals in Cremated Petrous Portions as Indicator for Childhood Origin. PLoS ONE 9(7): e101603, DOI: 10.1371/ journal.pone.0101603.
  • 26. İşcan, MY, Loth, SR, and Wright, RK, 1984. Metamorphosis at the sternal rib end: A new method to estimate age at death in white males. American Journal of Physical Anthropology 65(2): 147–156, DOI: 10.1002/ajpa.1330650206.
  • 27. Jørkov, MLS, Heinemeier, J, and Lynnerup, N, 2009. The petrous bone-A new sampling site for identifying early dietary patterns in stable isotopic studies. American Journal of Physical Anthropology 138(2): 199–209, DOI: 10.1002/ ajpa.20919.
  • 28. Keaveney, EM, and Reimer, PJ, 2012. Understanding the variability in freshwater radiocarbon reservoir offsets: a cautionary tale. Journal of Archaeological Science 39(5): 1306–1316, DOI: 10.1016/j.jas.2011.12.025.
  • 29. Kontopoulos, I, Penkman, K, McAllister, GD, Lynnerup, N, Damgaard, PB, Hansen, HB, Allentoft, ME, and Collins, MJ, 2019. Petrous bone diagenesis: a multi-analytical approach. Palaeogeography, Palaeoclimatology, Palaeoecology 518: 143–154, DOI: 10.1016/j.palaeo.2019.01.005.
  • 30. Korlević, P, Talamo, S, and Meyer, M, 2018. A combined method for DNA analysis and radiocarbon dating from a single sample. Scientific Reports, 8(1): 4127, DOI: 10.1038/s41598-018-22472-w.
  • 31. Lynnerup, N, Schulz, M, Madelung, A, and Graw, M, 2006. Diameter of the human internal acoustic meatus and sex determination. International Journal of Osteoarchaeology 16(2): 118–123, DOI: 10.1002/oa.811.
  • 32. Mathieson, I, Alpaslan-Roodenberg, S, Posth, C, Szécsényi-Nagy, A, Rohland, N, Mallick, S, Olalde, I, Broomandkhoshbacht, N, Candilio, F, Cheronet, O, Fernandes, D, Ferry, M, Gamarra, B, Fortes, GG, Haak, W, Harney, E, Jones, E, Keating, D, Krause-Kyora, B, Kucukkalipci, I, Michel, M, Mittnik, A, Nägele, K, Novak, M, Oppenheimer, J, Patterson, N, Pfrengle, S, Sirak, K, Stewardson, K, Vai, S, Alexandrov, S, Alt, KW, Andreescu, R, Antonović, D, Ash. A, Atanassova, N, Bacvarov, K, Gusztáv, MB, Bocherens, H, Bolus, M, Boroneanţ, A, Boyadzhiev, Y, Budnik, A, Burmaz, J, Chohadzhiev, S, Conard, NJ, Cottiaux, R, Čuka, M, Cupillard, C, Drucker, DG, Elenski, N, Francken, M, Galabova, B, Ganetsovski, G, Gély, B, Hajdu, T, Handzhyiska, V, Harvati, K, Higham, T, Iliev, S, Janković, I, Karavanić, I, Kennett, DJ, Komšo, D, Kozak, A, Labuda, D, Lari, M, Lazar, C, Leppek, M, Leshtakov, K, Vetro, DL, Los, D, Lozanov, I, Malina, M, Martini, F, McSweeney, K, Meller, H, Menđušić, M, Mirea, P, Moiseyev, V, Petrova, V, Price, TD, Simalcsik, A, Sineo, L, Šlaus, M, Slavchev, V, Stanev, P, Starović, A, Szeniczey, T, Talamo, S, Teschler-Nicola, M, Thevenet, C, Valchev, I, Valentin, F, Vasilyev, S, Veljanovska, F, Venelinova, S, Veselovskaya, E, Viola, B, Virag, C, Zaninović, J, Zäuner, S, Stockhammer, PW, Catalano, G, Krauß, R, Caramelli, D, Zariņa, G, Gaydarska, B, Lillie, M, Nikitin, AG, Potekhina, I, Papathanasiou, A, Borić, D, Bonsall, C, Krause, J, Pinhasi, R, and Reich, D, 2018. The genomic history of southeastern Europe. Nature 555: 197–203, DOI: 10.1038/nature25778.
  • 33. Millard, AR, 2014 Conventions for Reporting Radiocarbon Determinations. Radiocarbon, 56(2): 555–559, DOI: 10.2458/56.17455.
  • 34. Philippsen, B, 2013. The freshwater reservoir effect in radiocarbon dating. Heritage System 1(24): 1–19.
  • 35. Philippsen, B, and Heinemeier, J, 2013. Freshwater reservoir effect variability in Northern Germany. Radiocarbon 55(2–3): 1085–1101.
  • 36. Pinhasi, R, Fernandes, D, Sirak, K, Novak, M, Connell, S, AlpaslanRoodenberg, S, Gerritsen, F, Moiseyev, V, Gromov, A, Raczky, P, Anders, A, Pietrusewsky, M, Rollefson, G, Jovanovic, M, Trinhhoang, H, Bar-Oz, G, Oxenham, M, Matsumura, H, and Hofreiter, M, 2015. Optimal Ancient DNA Yields from the Inner Ear Part of the Human Petrous Bone. PLOS ONE 10(6): e0129102, DOI: 10.1371/journal.pone.0129102.
  • 37. Ponce de León, MS, Koesbardiati, T, Weissmann, JD, Milella, M, Reyna-Blanco, CS, Suwa, G, Kondo, O, Malaspinas, A-S, White, TD, and Zollikofer, CPE, 2018. Human bony labyrint is an indicator of population history and dispersal from Africa. Proceedings of the National Academy of Sciences 115(16): 4128–4133, DOI: 10.1073/pnas.1717873115.
  • 38. Reimer, PJ, Bard, E, Bayliss, A, Beck, WJ, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, LR, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Heaton, TJ, Hatté, C, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, FK, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, ME, Southon, JR, Staff, RA, Turney, CSM, and van der Plicht, J, 2013. IntCal13 and Marine 13 Radiocarbon Age Calibration Curves 0-50,000 Years cal BP. Radiocarbon 55(4): 1869–1887, DOI: 10.2458/azu_js_ rc.55.16947.
  • 39. Rose, HA, Meadows, J, and Bjerregaard, M, 2018. High-Resolution Dating of a Medieval Multiple Grave. Radiocarbon 60(5): 1547–1559, DOI: 10.1017/RDC.2018.43.
  • 40. Scheuer, L, and Black, SM, 2004. The juvenile skeleton. Elsevier Academic Press: London-San Diego.
  • 41. Schutkowski, H, 1983. Über den diagnostischen Wert der Pars petrosa ossis temporalis für die Geschlechtsbestimmung. Zeitschrift für Morphologie und Anthropologie 74(2): 129–144.
  • 42. Tütken, T. 2010. Die Isotopenanalyse fossiler Skelettreste – Bestimmung der Herkunft und Mobilität von Menschen und Tieren. Anthropologie, Isotopie und DNA - biografische Annäherung an namenlose vorgeschichtliche Skelette?: 2. Mitteldeutscher Archäologentag vom 08. bis 10. Oktober 2009. Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt, Landesmuseum für Vorgeschichte: Halle (Saale): 33–51.
  • 43. Ubelaker, DH, Bucholz, BA, and Stewart, JEB, 2006, Analysis of Artificial Radiocarbon in Different Skeletal and Dental Tissue Types to Evaluate Date of Death. Journal of Forensic Sciences 51(3): 484–488, DOI: 10.1111/j.1556- 4029.2006.00125.x.
  • 44. Ubelaker, DH, Thomas, C, and Olson, JE, 2015. The impact of age at death on the lag time of radiocarbon values in human bone. Forensic Science International 251: 56–60, DOI: 10.1016/j.forsciint.2015.03.024.
  • 45. van der Sluis, LG, Reimer, PJ, and Lynnerup, N, 2015. Investigating Intra-Individual Dietary Changes and 14C Ages Using HighResolution δ13C and δ15N Isotope Ratios and 14C Ages Obtained from Dentine Increments. Radiocarbon 57(4): 665–677, DOI: 10.2458/azu_rc.57.18338.
  • 46. van Klinken, GJ, 1999. Bone Collagen Quality Indicators for Palaeodietary and Radiocarbon Measurements. Journal of Archaeological Science 26: 687–695, DOI: 10.1006/ jasc.1998.0385.
  • 47. Virag, C, 2018. Urziceni, com. Urziceni, jud. Satu Mare, UrziceniVade Ret - Punct: Vamă. Cronica cercetărilor aheologice din România 70: 147–148.
  • 48. Yoder, C, Ubelaker, DH, and Powell, JF, 2001. Examination of Variation in Sternal Rib End Morphology Relevant to Age Assessment. Journal of Forensic Sciences 46(2): 223–227, DOI: 10.1520/JFS14953J.
Uwagi
„Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).”
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-32d5c6c3-5f33-49ba-bb8f-0d9e25efdaaa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.