Warianty tytułu
Języki publikacji
Abstrakty
Terrestrial laser scanners are important instruments in architecture, civil engineering, cultural heritage, mining and industry. The accuracy of the system is determined from several parameters of influence (type of laser, quality of encoders, stability of the tripod, measurement range and changes in the environmental conditions). The surveying of large objects requires a number of base stations and a registration process to obtain a point cloud in the same reference system. The registration is typically done using targets fixed on the object surface and the determination of their center is an important source of error. In this work, the accuracy in the evaluation of the center of the targets, using the scanner Riegl LMS Z390i and its software Riscan Pro, is calculated for a set of horizontal and vertical angles. Riscan software automatically detects the center of the targets using intensity based segmentation and the geometrical calculations. Comparing the coordinates obtained from the laser scanner system software and the ground truth, an increasing in the error with the decreasing of the incident angle is observed. A linear fit is used for the study of the trend and there are not important differences between the type of target (circular or square) and the type of angle (horizontal or vertical).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
773--781
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
autor
- Univesidade Federal do Paraná, Sector de Ciencias da Terra, Departamento de Geociencias, CEP 800000-000 – Curitiba, Paraná, Brazil
autor
- Universidade de Vigo, Area de Ingeniería Cartográfica, Geodesia y Fotogrametría, 36310 – Vigo, Spain higiniog@uvigo.es
autor
- Universidade de Vigo, Area de Ingeniería Cartográfica, Geodesia y Fotogrametría, 36310 – Vigo, Spain
autor
- Universidade de Vigo, Area de Ingeniería Cartográfica, Geodesia y Fotogrametría, 36310 – Vigo, Spain
Bibliografia
- [1] BARRILE V., MEDURI G., BILOTTA G., Laser scanning surveying techniques aiming to the study and the spreading of recent architectural structures, [In] Proceedings of the 2nd WSEAS International Conference on Engineering Mechanics, Structures and Engineering Geology, (EMESEG ‘09), WSEAS Press, 2009, pp. 25–28.
- [2] BERENYA A., LOVAS T., BARSI A., DUNAI L., Potential of terrestrial laser scanning in load test measurements of bridges, Civil Engineering 53, 2009, pp. 25–33.
- [3] ARMESTO J., ROCA-PARDIÑAS J., LORENZO H., ARIAS P., Modelling masonry arches shape using terrestrial laser scanning data and non-parametric methods, Engineering Structures 32(2), 2010, pp. 607–615.
- [4] MANCERA-TABOADA J., RODRÍGUEZ-GONZÁLEZ P., GONZÁLEZ-AGUILERA D., Turning point clouds into 3d models: The aqueduct of Segovia, Lecture Notes in Computer Science 5592, 2009, pp. 520–532.
- [5] BORNAZ L., LINGUA A., RINAUDO F., Terrestrial laser scanning: Increasing automation for engineering and heritage applications, GIM International 17(3), 2003, pp. 12–15.
- [6] POULTON C.V.L., LEE J.R., HOBBS P.R.N., JONES L., HALL M., Preliminary investigation into monitoring coastal erosion using terrestrial laser scanning: Case of study at Happisburgh, Norfolk, Bulletin of the Geological Society of Norfolk, No. 56, 2006, pp. 45–64.
- [7] PENA GONZÁLEZ E., SÁNCHEZ-TEMBLEQUE DÍAZ-PACHE F., PENA MOSQUERA L., PUERTAS AGUDO J., Bidimensional measurement of an underwater sediment surface using a 3D-scanner, Optics and Laser Technology 39(3), 2007, pp. 481–489.
- [8] LICHTI D.D., STEWART M.P., TSAKIRI M., SNOW A.J., Benchmark tests on a three-dimensional laser scanning system, Geomatics Research Australasia, No. 72, 2000, pp. 1–23.
- [9] LICHTI D.D., FRANKE J., Self calibration of the iQsun 880 laser scanner, [In] Optical 3D Measurement Techniques VII, Vol. I, Vienna, Austria, 2005, pp. 112–121.
- [10] LICHTI D.D., LICHT M.G., Experiences with terrestrial laser scanner modeling and accuracy assessment, IAPRS Dresden 36(5), 2006, pp. 155–160.
- [11] LICHTI D.D., Terrestrial laser scanner self-calibration: Correlation sources and their mitigation, ISPRS Journal of Photogrammetry and Remote Sensing 65(1), 2010, pp. 93–102.
- [12] ABMAYR T., DALTON G., HÄTRL F., HINES D., LIU R., HIRZINGER G., FRÖLICH C., Standarization and visualization of 2.5D scanning data and color information by inverse mapping, [In] Optical 3D Measurement Techniques VII, Vol. I, Vienna, Austria, 2005, pp. 164–173.
- [13] LICHTI D.D., JAMTSHO S., Angular resolution of terrestrial laser scanners, The Photogrammetric Record 21(114), 2006, pp. 141–160.
- [14] BOEHLER W., BORDAS VICENT M., MARBS A., Investigating laser scanner accuraccy, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 34(5), 2003, pp. 696–701.
- [15] SCHULTZ T., INGENSAND H., Influencing variables, precision and accuracy of terrestrial laser scanners, FIG Regional Central and Eastern European Conference on Engineering Surveying, Bratislava, Slovakia, 2004.
- [16] WUTKE J.D., Metodos para avaliação de um sistema laser scanner terrestre, Universidade Federal do Paraná, Departamento de Geomática, Curitiba, Brasil, 2006, p. 99.
- [17] GORDON S., LICHTI D., STEWART M., TSAKIRI M., Metric performance of a high-resolution laser scanner, Proceedings of SPIE 4309, 2001, pp. 174–184.
- [18] MECHELKE K., KERSTEN T.P., LINDSTAEDT M., Comparative investigations into the accuracy behavior of the new generation of terrestrial laser scanning systems, [In] Optical 3D Measurement Techniques VIII, Zurich, 2007, pp. 319–327.
- [19] GONZÁLEZ-JORGE H., RIVEIRO B., ARMESTO J., ARIAS P., Standard artifact for the geometric verification of terrestrial laser scanning systems, Optics and Lasers Tecnology 43(7), 2011,pp. 1249–1256.
- [20] GOLNABI H., Design and operation of a laser scanning system, Optics and Laser Technology 32(4), 2000, pp. 267–272.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-32a66699-c9c4-474e-9d29-a83c8c90762a