Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 18, No. 1 | 11--17
Tytuł artykułu

The highest entropy production during diffusion

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present paper, the theory of the highest entropy production is discussed. It allows to predict, which phases will grow during the multiphase ternary interdiffusion process. Moreover, the theory says, that phase with the highest entropy production value will nucleate as first in the reaction zone. To verify the theory the mathematical formula for calculating the entropy production was formulated. The formula bases on the generalized Darken method. Two diffusion couples: pure titanium with high purity copper-nickel alloys with different initial composition: Ni10Cu90-Ti and Ni90Cu10-Ti (at at.%) were annealed to obtain the thermodynamic and kinetic data. The integral diffusion coefficients for each component in each phase were determined using Wagners method. The reaction zones in ternary system have been analyzed: the microstructure was observed and chemical compositions were measured. Based on obtained results the entropy production was calculated. It can be expected, that the theory of the highest entropy production can be applied in determining a proper diffusion path in multicomponent, multiphase system.
Wydawca

Rocznik
Strony
11--17
Opis fizyczny
Biblio gr. 18 poz., rys.
Twórcy
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics al. Powstańców Warszawy 12, 35-959 Rzeszow, Poland
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics al. Powstańców Warszawy 12, 35-959 Rzeszow, Poland, bwierzba@prz.edu.pl
Bibliografia
  • Barin, I., 1995, Thermodynamical Data of Pure Substances, VCH Verlagsgesellschaft, Weinheim. Danielewski, M., Wierzba, B., 2010, Thermodynamically consistent bi-velocity mass transport phenomenology, Acta Materialia, 58(20), 6717-6727.
  • Darken, L.S., 1948, Diffusion, mobility and their interrelation through free energy in binary metallic systems, Trans. AIME, 184.
  • Effenberg, G., Ilyenko S., 2006, Ternary Alloy Systems -Phase Diagrams, Crystallographic and Thermodynamic Data: Light Metal Systems, Part 4: Selected Systems from Al-Si-Ti to Ni-Si-Ti, Materials Science International Team, MSIT, IV/11A4, New Series, Landolt-Bornstein.
  • Gusak, A.M., 2010, Diffusion-controlled Solid State Reactions in alloys, Thin Films and Nano Systems, WileyVCH Verlag GmbH & Co, WeinHeim.Ho, M.C., Lo, P.J., Liu, W.L., Hsieh, K.C., 2017,Relationship of Brazing Microstructure and Ti-Cu-Ni Phase Diagram, Journal of Materials Science andEngineering, B 7, 7-8, 142-148.
  • Ishida, A., Sato, M., Gao, Z.Y., 2013, Properties and applications of Ti-Ni-Cu shape-memory-alloy thin films, Journal of Alloys and Compounds, 577, 184-189.
  • Kirkaldy, J.S., Brown, L.S., 1963, Diffusion Behaviour in Ternary, Multiphase Systems, Canadian Metallurgical Quarterly, 2, 89-111.
  • Kirkaldy, J.S., Young, D.J., 1987, Diffusion in the Condensed State, The Institute of Metals, London.
  • Kizilyalli, M., Corish, J., Metselaar, R., 1999, Definitions of Terms for Diffusion in the Solid State, Pure and Applied Chemistry, 71(7), 1307-1325.
  • Li, H. Qiu, K., Zhou, F.Y., Li, L., Zheng, Y., 2016, Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application, Scientific Reports, 6, 37475.
  • Moberly, W.J., Proft, J.L., Duerig, T.W., Sinclair, R., 1990, Twinless Martensite in TiNiCu Shape Memory Alloys, Materials Science Forum, 56-58, 605-610.
  • Morral, J.E., 2012, Diffusion Path Theorems for Ternary Diffusion Couples, Metallurgical and Materials Transactions, A, 43A, 3462-3470.
  • Nam, TH., Saburi, T., Shimizu, KI., 1990, Cu-content dependence of shape memory characteristics in Ti-NiCu alloys, Materials Transactions, JIM, 31(11), 959-967.
  • Nernst, W., 1889, Die elektromotorische Wirkamkeit der Ionen, Z. Phys. Chem., 4, 129.
  • Paul A., Ghosh, C., Boettinger, W.J., 2011, Diffusion Parameters and Growth Mechanism of Phases in the CuSn system, Metallurgical and Materials Transactions,A, 42A, 952-963.
  • Plank, M., 1890, Ber die potentialdirenz zwischen zwei vernnten Isungen binrer elektoryle, Ann. Phys. Chem., 40, 561.
  • Progogine, I., 1961, Thermodynamics of Irreversible processes, Interscience, New York.
  • Wagner, C, 1969, The evaluation of data obtained with diffusion couples of binary single-phase and multiphase systems, Acta Metallurgica, 17(2), 99-107.
  • Wierzba, B., 2016, Phase competition in ternary Ti-Ni-Al system, Physica A: Statistical Mechanics and its Applications, 454, 110-116.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3290514e-4c1f-40d3-b2da-9b107488a0f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.