Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2023 | Vol. 71, no. 1 | 29--52
Tytuł artykułu

Vrancea intermediate-depth focal mechanism catalog: a useful instrument for local and regional stress field estimation

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Vrancea seismic zone, located in the bend region of the South-Eastern Carpathians, is a unique area with both crustal and intermediate-depth seismic activity and is known as one of the most active seismic area in Europe. Moderate crustal seismicity is recorded all over the Carpathian region, but the far more intense activity occurs in a small subcrustal seismogenic volume beneath the SE‐bend of the Carpathian arc with about 20×50 km lateral and 110 km vertical extent (70–180 km depth). A unique slab geometry, likely preserved until the present, causes stress localization due to the slab bending and subsequent stress release resulting in large mantle earthquakes in the region. The main focus of this study is to determine the focal mechanisms for events with a magnitude larger than 2.7, between 2005 and 2020 and evaluate the current stress field along the Vrancea subcrustal region, from the derived fault plane solutions. The main style of faulting for Vrancea subcrustal events presents a predominant reverse one, with two main earthquakes categories: the first one with the nodal planes, oriented NE–SW parallel with the Carpathian Arc and the second one with the nodal planes, oriented NW–SE perpendicular on the Carpathian Arc. The results of stress inversion indicate a dominant thrust faulting style, with an average stress regime index of 2.87. The stress pattern shows similar partitioning with vertical extension in the slab and no preferred orientation in the overlying crust, showing a transition regime from the extensional regime in the Moesian Platform to the compressional regime in the Vrancea subcrustal zone.
Wydawca

Czasopismo
Rocznik
Strony
29--52
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
  • National Institute for Earth Physics, Calugareni, 12, Măgurele, Ilfov, Romania, atugui@infp.ro
  • National Institute for Earth Physics, Calugareni, 12, Măgurele, Ilfov, Romania
  • National Institute for Earth Physics, Calugareni, 12, Măgurele, Ilfov, Romania
  • National Institute for Earth Physics, Calugareni, 12, Măgurele, Ilfov, Romania
  • GNS Science, P.O. Box 30-368, Lower Hutt, New Zealand
  • National Institute for Earth Physics, Calugareni, 12, Măgurele, Ilfov, Romania
Bibliografia
  • 1. Aki K, Richards PG (1980) Quantitative seismology, theory and methods, vol I and II. W.H. Freeman, San Francisco
  • 2. Ardeleanu L (2018) On the determination of fault plane solutions of weak crustal earthquakes of Vrancea region (Romania). Acta Geod Geophys 53:717–730
  • 3. Ardeleanu L, Raileanu V (2011) The focal mechanism of low magnitude subcrustal earthquakes of Vrancea retrieved by high frequency waveform inversion. Rom Rep Phys 63(2):503–519
  • 4. Asch K., (2003). The 1:5 Million International Geological Map of Europe and Adjacent Areas: Development and Implementation of a GIS-enabled Concept. Geologisches Jahrbuch, SA 3, Stuttgart: E. Schweizerbartsche Verlagsbuchhandlung.
  • 5. Bott MHP (1959) The mechanisms of oblique slip faulting. Geol Mag 96:109–117
  • 6. Cioflan CO, Toma-Danila D, Manea EF (2016) Seismic loss estimates for scenarios of the 1940 Vrancea earthquake. In: Vacareanu R, Ionescu C (eds) The 1940 Vrancea earthquake. Issues, insights and lessons learnt. Springer International Publishing, Cham, pp 425–439. https://doi.org/10.1007/978-3-319-29844-3_30
  • 7. Cioflan CO, Manea EF, Apostol BF (2022) Insights from neo-deterministic seismic hazard analyses in Romania. In: Panza G, Kossobokov VG, Laor E, DeVivo B (eds) Earthquakes and sustainable infrastructure: neodeterministic (NDSHA) approach guarantees prevention rather than cure. Elsevier
  • 8. Craiu M, Craiu A, Ionescu C, Popa M, Radulian M (2012) New local magnitude calibration for Vrancea (Romania) intermediate-depth earthquakes. Rom Rep Phys 64(4):1097–1108
  • 9. Craiu A, Craiu M, Diaconescu M, Marmureanu A (2016a) 2013 seismic swarm recorded in Galati area, Romania- focal mechanism solutions, Acta Geodaetica et. Geophysica 52(1):53–67. https://doi.org/10.1007/s40328-016-0161-9
  • 10. Craiu A, Diaconescu M, Craiu M, Marmureanu A, Ionescu C (2016b) Analysis of the seismic activity in the Vrancea intermediate-depth source region during the period 2010–2015. In: Vacareanu R, Ionescu C (eds) The 1940 Vrancea earthquake. Issues, insights and lessons learnt. Springer International Publishing, Cham, pp 189–203. https://doi.org/10.1007/978-3-319-29844-3_13
  • 11. Craiu A, Ghita C, Craiu M, Diaconescu M, Mihai M, Ardeleanu L (2019) The source mechanism of the seismic events during the sequence of the moderate-size crustal earthquake of November 22, 2014 of Vrancea region (Romania). Ann Geophys. https://doi.org/10.4401/ag-7617
  • 12. Craiu A, Craiu M, Diaconescu M, Marmureanu A (2015a). Seismic activity and focal mechanisms analysis for different seismic zones of Romania (2010–2014). In:15th International multidisciplinary scientific Geoconference, SGEM 2015a conference proceedings, ISBN 978–619–7105–33–9/ISSN 1314–2704, June 18–24, Book1 3: 947–956
  • 13. Craiu M, Marmureanu A, Craiu A, Ionescu C (2015b) Real-time earthquake location performance of Romanian Seismic Network (RONET) for Vrancea intermediate-depth earthquakes, as the first step in EEWS, SGEM2015b, ISBN 978–619–7105–33–9/ISSN 1314–2704, June 18–24, Book1 3: 925–932
  • 14. Delvaux D (2012) Release of program Win-Tensor 4.0 for tectonic stress inversion: statistical expression of stress parameters. EGU General Assembly, Vienna, 2012. Geophys Res Abs 14:EGU2012-5899
  • 15. Delvaux D, Sperner B (2003) Stress tensor inversion from fault kinematic indicators and focal mechanism data: the TENSOR program. In: Nieuwland D (Eds) New Insights into Structural Interpretation and Modelling: Geol. Soc. Lond. Spec. Publ., 212: 75–100
  • 16. Delvaux D, Barth A (2010) African stress pattern from formal inversion of focal mechanism data. Implic Rift Dyn Tectonophys 482:105–128
  • 17. Ferrand TP, Manea EF (2021) Dehydration-induced earthquakes identified in a subducted oceanic slab beneath Vrancea, Romania. Sci Rep 11(1):1–9. https://doi.org/10.1038/s41598-021-89601-w
  • 18. Frohlich C (1992) Triangle diagrams ternary graphs to display similarity and diversity of earthquake focal mechanisms. Phys Earth Planet Inter 75:193–198
  • 19. Frohlich C (2001) Display and quantitative assessment of distributions of earthquake focal mechanisms. Geophys J Int 144(2):300–308
  • 20. Havskov J, Voss PH, Ottemoller L (2020) Seismological observatory software: 30 Yr of SEISAN. Seismol Res Lett 91(3):1846–1852
  • 21. Ismail-Zadeh A, Matenco L, Radulian M, Cloetingh S, Panza G (2012) Geodynamics and intermediate-depth seismicity in Vrancea (the south-eastern Carpathians): current state-of-the art. Tectonophysics 530:50–79
  • 22. Ismail-Zadeh AT, Panza GF, Naimark BM (2000) Stress in the descending relic slab beneath the Vrancea region, Romania. In: Panza G, Radulian M, Trifu CI (eds) Seismic hazard of the Circum-Pannonian Region. Birkhäuser, Basel, pp 111–130
  • 23. Kagan YY (2005) Double-couple earthquake focal mechanism: Random rotation and display. Geophys J Int 163(3):1065–1072
  • 24. Kaverina AN, Lander AV, Prozorov AG (1996) Global creepex distribution and its relation to earthquake-source geometry and tectonic origin. Geophys J Int 125(1):249–265
  • 25. Knapp JH, Knapp CC, Raileanu V, Matenco L, Mocanu V, Dinu C (2005) Crustal constraints on the origin of mantle seismicity in the Vrancea Zone, Romania: the case for active continental lithospheric delamination. Tectonophysics 410(1–4):311–323
  • 26. Koulakov I, Zaharia B, Enescu B, Radulian M, Popa M, Parolai S, Zschau J (2010) Delamination or slab detachment beneath Vrancea? New arguments from local earthquake tomography. Geochem Geophys Geosyst. https://doi.org/10.1029/2009GC002811
  • 27. Kronrod T, Radulian M, Panza G, Popa M, Paskaleva I, Radovanovich S, Pekevski L (2013) Integrated transnational macroseismic data set for the strongest earthquakes of Vrancea (Romania). Tectonophysics 590:1–23
  • 28. Lees JM (2018) RFOC: graphics for spherical distributions and earthquake focal mechanisms. R package version 3.4–6. https://CRAN.R-project.org/package=RFOC
  • 29. Lund B, Townend J (2007) Calculating horizontal stress orientations with full or partial knowledge of the tectonic stress tensor. Geophys J Int 270:1328–1335
  • 30. Manea EF, Cioflan CO, Coman A, Michel C, Poggi V, Fäh D (2020) Estimating geophysical bedrock depth using single station analysis and geophysical data in the extra-Carpathian area of Romania. Pure Appl Geophys 177(10):4829–4844
  • 31. Manea EF, Cioflan CO, Danciu L (2022) Ground-motion models for Vrancea intermediate-depth earthquakes. Earthq Spectra 38(1):407–431. https://doi.org/10.1177/87552930211032985
  • 32. Marmureanu G, Cioflan CO, Marmureanu A, Manea EF (2016a) Main characteristics of November 10, 1940 strong Vrancea earthquake in seismological and physics of earthquake terms. In: Vacareanu R, Ionescu C (eds) The 1940 Vrancea earthquake. Issues, insights and lessons learnt. Springer International Publishing, Cham, pp 73–83. https://doi.org/10.1007/978-3-319-29844-3_5
  • 33. Marmureanu G, Marmureanu A, Manea EF, Toma-Danila D, Vlad M (2016b) Can we still use classic seismic hazard analysis for strong and deep Vrancea earthquakes. Rom Rep Phys 61(3–4):728–738
  • 34. Marmureanu G, Manea EF, Cioflan CO, Marmureanu A, Toma-Danila D (2017) Spectral response features used in last IAEA stress test to NPP Cernavoda (ROMANIA) by considering strong nonlinear behaviour of site soils. Rom J Phys 62:822
  • 35. Marmureanu A, Ionescu C, Grecu B, Toma-Danila D, Tiganescu A, Neagoe C, Toader V, Craifaleanu IG, Dragomir CS, Meiţă V, Liashchuk OI, Dimitrova L, Ilieş I (2021) From national to transnational seismic monitoring products and services in the Republic of Bulgaria, Republic of Moldova, Romania, and Ukraine. Seismol Res Lett 92(3):1685–1703
  • 36. Martin M, Wenzel F, CALIXTO Working Group (2006) High-resolution teleseismic body wave tomography beneath SE-Romania-II. Imaging of a slab detachment scenario. Geophys J Int 164(3):579–595
  • 37. Matenco L, Bertotti G, Leever K, Cloetingh S, Schmid SM, Tărăpoancă M, Dinu C (2007) Large-scale deformation in a locked collisional boundary: Interplay between subsidence and uplift, intraplate stress, and inherited lithospheric structure in the late stage of the SE Carpathians evolution: CARPATHIANS-POSTCOLLISIONAL EVOLUTION. Tectonics 26(4):n/a-n/a. https://doi.org/10.1029/2006TC001951
  • 38. Mihaela P, Chircea A, Dinescu R, Neagoe C, Grecu B (2022) Romanian earthquake catalogue (ROMPLUS). Mendeley Data V1. https://doi.org/10.17632/tdfb4fgghy.1
  • 39. Oncescu M, Trifu CI (1987) Depth variation of moment tensor principal axes in Vrancea (Romania) seismic region in Annales geophysicae. Series b Terrestrial Planetary Phys 5:149–154
  • 40. Oth A, Bindi D, Parolai S, Wenzel F (2008) S-Wave attenuation characteristics beneath the Vrancea Region in Romania: new insights from the inversion of ground-motion spectra. Bull Seismol Soc Am 98:2482–2497. https://doi.org/10.1785/0120080106
  • 41. Petrescu L, Borleanu F, Radulian M, Ismail-Zadeh A, Maţenco L (2021) Tectonic regimes and stress patterns in the Vrancea Seismic Zone: Insights into intermediate-depth earthquake nests in locked collisional settings. Tectonophysics 799:228688
  • 42. R Core Team (2021) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. URL https://www.R-project.org/
  • 43. Radulian M, Popescu E, Bala A, Utale A (2002) Catalog of the fault plane solutions for the earthquakes occured on the Romanian territory. Rom J Phys 47:663–670
  • 44. Radulian M, Mandrescu N, Panza G, Popescu E, Utale A (2000) Characterization of seismogenic zones of Romania. In: Panza G, Radulian M, Trifu CI (eds) Seismic hazard of the Circum-Pannonian Region. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8415-0_4
  • 45. Radulian M, Bala A, Popescu E, Toma-Danila D (2018) Earthquake mechanism and characterization of seismogenic zones in south-eastern part of Romania. Ann Geophys. https://doi.org/10.4401/ag-7443
  • 46. Radulian M, Bălă A, Ardeleanu L, Toma-Danila D, Petrescu L, Popescu E (2019) Revised catalogue ofearthquake mechanisms for the events occurred in Romania until the end of twentieth century: REFMC. Acta GeodGeophys 54:3–18. https://doi.org/10.1007/s40328-018-0243-y
  • 47. Snoke JA, Munsey JW, Teague AG, Bollinger GA (1984) A program for focal mechanism determination by combined use of polarity and SV-P amplitude ratio data. Earthquake Note 55:15
  • 48. Trifu CI, Radulian M (1994) Dynamics of a seismic regime: Vrancea -a case history in nonlinear dynamics andpredictability of geophysical phenomena. In: Gabrielov AM, Newman WI (eds) Geophysical monograph, vol 18. IUUG. AGU, Washington DC, pp 43–53
  • 49. Tugui A, Craiu M (2008) Inversion of the October 27, 2004 Vrancea (Romania) earthquake using teleseismic waveforms data. Acta Geod Geoph Hung 43(2–3):175–181
  • 50. Zoback ML (1992) First- and second-order patterns of stress in the lithosphere: the world stress map project. J Geophys Res 97(8):11703–11728
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-325a4595-e4bc-4263-96b2-84fd25647279
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.