Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | Vol. 24, Fasc. 1 | 191--210
Tytuł artykułu

A note on diffusions in compressible environments

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study the equation of a motion of a passive tracer in a time-independent turbulent flow in a medium with a positive molecular diffusivity. In [6] the authors have shown the existence of an invariant probability measure for the Lagrangian velocity process. This measure is absolutely continuous with respect to the underlying physical probability for the Eulerian flow. As a result the existence of the Stokes drift has been proved. The results of [6] were derived under some technical condition on the statistics of the Eulerian velocity field. This condition was crucial in the proof in [6]. However, in applications it is difficult to check whether the velocity field satisfies this condition. In this note we show that the main result of [6] can be stated also without the above-mentioned technical assumption. A some what similar result, but for time-dependent flows with different statistical properties, has been shown in [5].
Wydawca

Rocznik
Strony
191--210
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
  • Faculty of Mathematics and Natural Sciences, The Catholic University of Lublin, Lublin, Poland, gkrupa@kul.lublin.pl
Bibliografia
  • [1] D, G. Aronson and J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rational Mech. Anal. 25 (1967), pp. 81-122.
  • [2] A. Fannjiang and T. Komorowski, An invariance principle for diffusions in turbulence, Ann. Probab. 27 (1999), pp. 751-781.
  • [3] J. Komlós, A new generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hungar. 18 (1967), pp. 217-229.
  • [4] T. Komorowski and G. Krupa, On the existence of invariant measure for Lagrangian velocity in compressible environments, J. Statist. Phys. 106 (2002), pp. 635-651; Erratum, J. Statist. Phys. 109 (2002), p. 341.
  • [5] T. Komorowski and G. Krupa, A note on an application of the Lasota-York fixed point theorem in the turbulent transport problem, Bull. Polish Acad. Sci. 52 (1) (2003), pp. 101-113.
  • [6] T. Komorowski and G. Krupa, On stationarity of Lagrangian observations of passive tracer velocity in a compressible environment, Ann. Appl. Probab. (2004), http://kni.kul.lublin.pl/-gkrupa/Articles/CTIM703B.ps.
  • [7] A. Lasota and M. Mackey, Probabilistic Properties of Deterministic Systems, Cambridge Univ. Press, 1985.
  • [8] Yu. A. Rozanov, Stationary Random Processes, Holden-Day, 1969.
  • [9] A. V. Skorokhod, σ-algebras of events on probability spaces. Similarity and factorization, Theory Probab. Appl. 36 (1990), pp. 63-73.
  • [10] D. Strook and S. R. S. Varadhan, Multidimensional Diffusion Processes, Springer, Berlin-Heidelberg-New York 1979.
  • [11] A. S. Sznitman and M. Zerner, A law of large numbers for random walks in random environment, Ann. Probab. 27 (1999), pp. 1851-1869.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-324d1c3a-fdee-4876-9a70-314807502e2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.