Czasopismo
2016
|
Vol. 64, nr 4
|
534--546
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Earthworms, as ecosystem engineers, strongly regulate microbial activities and microorganism-mediated processes in the soil; their effects differ among species and ecological groups. Lumbricids are suggested to have density-dependent regulation of species populations, but it is not known whether their effects on soil processes are density-dependent. In a field experiment, litter/soil microcosms contained monocultures of five common lumbricid species belonging to epigeic, anecic and endogeic ecological groups, at various density levels. After 6 and 15 weeks, respiration rates of soil systems were measured and (after subtraction of approximately calculated earthworm respiration) microbial respiration rates estimated. In the presence of earthworms, respiration of soil systems tended to increase. After 6 weeks, this increment was explained by earthworm's own respiration. However, after 15 weeks earthworm respiration comprised 12–80% of the respiration increment; hence, microbial respiration was stimulated by earthworm activities. In any earthworm species, total community and microbial respiration were correlated with its density increase. However, specific respiration increments (per unit earthworm biomass) were not significantly affected by lumbricid density. The lack of density-dependent patterns indicates a weak impact of lumbricid intraspecific interactions on soil respiration. However, specific respiration increments and stimulation of microbial respiration varied across earthworm species, being higher for endogeic than for epigeic/anecic species. This is explained by a relatively lower microbial grazing by endogeics and a depletion of litter (a resource and environment for the microbial community) by epigeic/anecic earthworms. Overall, the results support the view that microbial community adapts to the presence of earthworms by switching to a smaller, but a more active one.
Czasopismo
Rocznik
Tom
Strony
534--546
Opis fizyczny
Bibliogr. 50 poz., tab., wykr.
Twórcy
autor
- Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia, av.uvarov@hotmail.com
- Centre for Ecological Research PAS, Dziekanów Leśny, Poland
Bibliografia
- [1] Aira M., McNamara N. P., Piearce T. G., Domínguez J. 2009 — Microbial communities of Lumbricus terrestris L. middens: structure, activity, and changes through time in relation to earthworm presence — J. Soils Sediment. 9: 54–61.
- [2] Aira M., Monroy F., Domínguez J., Mato S. 2002 — How earthworm density affects microbial biomass and activity in pig manure — Eur. J. Soil Biol. 38: 7–10.
- [3] Aira M., Sampedro L., Monroy F., Domínguez J. 2008 — Detritivorous earthworms directly modify the structure, thus altering the functioning of a microdecomposer food web — Soil Biol. Biochem. 40: 2511–2516.
- [4] Boag B., Legg R. K., Neilson R., Palmer L. F., Hackett C. A. 1994 — The use of Taylor's Power Law to describe the aggregated distribution of earthworms in permanent pasture and arable soil in Scotland — Pedobiologia, 38: 303–306.
- [5] Bohlen P. J., Parmelee R. W., Blair J. M. 2004 — Integrating the effects of earthworms on nutrient cycling across spatial and temporal scales (In: Earthworm Ecology, 2nd ed., Ed: C. A. Edwards) — Boca Raton, Florida, CRC Press LLC, pp. 161–180.
- [6] Briones M. J. I. 2014 — Soil fauna and soil functions: a jigsaw puzzle — Front. Environ. Sci. 2, art. 7: 1–22.
- [7] Brown G. G. 1995 — How do earthworms affect microfloral and faunal community diversity? — Plant Soil, 170: 209–231.
- [8] Byzov B. A. 2005 — [Zoomicrobial interactions in soil] — Moscow, GEOS Publ., 212 pp. (in Russian).
- [9] Byzova Ju. B. 2007 — [Respiration of soil invertebrates] — Moscow, KMK Publ. House, 328 pp. (in Russian).
- [10] Curry J. P., Schmidt O. 2007 — The feeding ecology of earthworms - A review — Pedobiologia, 50: 463–477.
- [11] Dymond P., Scheu S., Parkinson D. 1997 — Density and distribution of Dendrobaena octaedra (Lumbricidae) in aspen and pine forests in the Canadian Rocky Mountains (Alberta) — Soil Biol. Biochem. 29: 265–273.
- [12] Edwards C. A., Bohlen P. J. 1996 — Biology and Ecology of Earthworms — London, UK, Chapman and Hall, 426 p.
- [13] Heal O. W., MacLean S. F. 1975 — Comparative productivity in ecosystems — secondary productivity — (In: Unifying concepts in ecology, Eds: W. H. Van Dobben, R. H. Lowe-McConnell) — The Hague, Wageningen, pp. 89–108.
- [14] Hendriksen N. B. 1997 — Earthworm effects on respiratory activity in a dung - soil system — Soil Biol. Biochem. 29: 347–351.
- [15] Holter P. 1983 — Effect of earthworms on the disappearance rate of cattle droppings — (In: Earthworm Ecology - From Darwin to Vermiculture, Ed: J. E. Satchell) — Chapman & Hall, London, pp. 49–50.
- [16] Hutchinson K. J., King K. L. 1979 — Consumers (In: Grassland ecosystems of the world. Analyses of grasslands and their uses, Ed: R. Coupland) — IBP N18. Cambridge Univ. Press, pp. 259–265.
- [17] Klok C., de Roos A. M. 1996 — Population level consequences of toxicological influences on individual growth and reproduction in Lumbricus rubellus (Lumbricidae, Oligochaeta) — Ecotoxicol. Environ. Safety, 33: 118–127.
- [18] Lachnicht S. L., Hendrix P. F. 2001 — Interaction of the earthworm Diplocardia missisipiensis (Megascolecidae) with microbial and nutrient dynamics in a subtropical Spodosol — Soil Biol. Biochem. 33: 1411–1417.
- [19] Lahr J., Kools S. A. E., van der Hout A., Faber J. H. 2008 — Combined effects of zinc and earthworm density on soil ecosystem functioning — Soil Biol. Biochem. 40: 334–341.
- [20] Lavelle P., Spain A. V. 2001 — Soil Ecology — London, Kluwer Academic Publishers.
- [21] Lee K. E. 1985 — Earthworms, their ecology and relationships with soils and land use — Acad. Press Australia, 411 p.
- [22] Liu Z. G., Zou X. M. 2002 — Exotic earthworms accelerate plant litter decomposition in a Puerto Rican pasture and a wet forest — Ecol. Applications, 12: 1406–1417.
- [23] McLean M. A., Migge-Kleian S., Parkinson D. 2006 — Earthworm invasions of ecosystems devoid of earthworms: effects on soil microbes — Biol. Invasions, 8: 1257–1273.
- [24] McLean M. A., Parkinson D. 1997 — Changes in structure, organic matter and microbial activity in pine forest soil following the introduction of Dendrobaena octaedra (Oligochaeta, Lumbricidae) — Soil Biol. Biochem. 29: 537–540.
- [25] Pang I. Z., Qiao Y. H., Sun Z. J., Zhang S. X., Li Y. L. 2012 — Effects of epigeic earthworms on decomposition of wheat straw and nutrient cycling in agricultural soils in a reclaimed salinity area: A microcosm study — Pedosphere, 22: 726–735.
- [26] Persson T., Bääth E., Clarholm M., Lundkvist H., Söderström B. E., Sohlenius B. 1980 — Trophic structure, biomass dynamics and carbon metabolism of soil organisms in a Scots pine forest — (In: Structure and function of northern coniferous forests: An ecosystem study, Ed: T. Persson) — Ecol. Bull. (Stockholm), 32: 419–459.
- [27] Persson T., Lohm U. 1977 — Energetical significance of the soil- and litter-inhabiting annelids and arthropods in a Swedish grassland ecosystem — Ecol. Bull. (Stockholm), 23: 1–211.
- [28] Petersen H., Luxton M. 1982 — A comparative analysis of soil fauna populations and their role in decomposition processes — Oikos, 39: 287–388.
- [29] Phillipson J., Abel R., Steel J., Woodell S. R. J. 1976 — Earthworms and the factors governing their distribution in an English beechwood — Pedobiologia, 16: 258–285.
- [30] Raich J. W., Schlesinger W. H. 1992 — The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate — Tellus, 44B: 81–99.
- [31] Satchell J. E. 1980 — r worms and K worms: a basis for classifying lumbricid earthworm strategies — (In: Soil Biology as Related to Land Use Practices. Proc. 7th Intl. Soil Zool. Colloq., Syracuse, 1979, Ed: D. L. Dindal) —Washington D.C., pp. 848–864.
- [32] Speratti A. B., Whalen J. K. 2008 — Carbon dioxide and nitrous oxide fluxes from soil as influenced by anecic and endogeic earthworms — Appl. Soil Ecol. 38: 27–33.
- [33] Striganova B. R. 1980 — [Feeding of soil saprophages] — Moscow, Nauka Sci. Publ. 244 pp. (in Russian).
- [34] Szlavecz K., McCormick M., Xia L., Saunders J., Morcol T., Whigham D., Filley T., Csuzdi C. 2011 — Ecosystem effects of non-native earthworms in Mid-Atlantic deciduous forests — Biol. Invasions, 13: 1165–1182.
- [35] Tiunov A. V. 2007 — [Metabiosis in the soil system: Influence of earthworms on structure and functioning of soil biota] — Habilitation thesis, Moscow, Institute of Ecology and Evolution RAS, 294 pp. (in Russian).
- [36] Tiunov A. V., Bonkowski M., Alphei J., Scheu S. 2001 — Microflora, Protozoa and Nematoda in Lumbricus terrestris burrow walls: a laboratory experiment — Pedobiologia, 45: 46–60.
- [37] Tiunov A. V., Scheu S. 1999 — Microbial respiration, biomass, biovolume and nutrient status in Lumbricus terrestris L. burrow walls — Soil Biol. Biochem. 31: 2039–2048.
- [38] Uvarov A. V. 1989 — Energetical evaluation of the role of soil invertebrates in the process of plant remains decomposition — (In: Soil fauna and soil fertility. Proc. of the 9th Intl. Coll. on Soil Zoology, Moscow, August, 1985, Ed: B. R. Striganova) — Moscow, Nauka Sci. Publ., pp. 143–150.
- [39] Uvarov A. V. 1995 − Responses of an earthworm species to constant and diurnally fluctuating temperature regime in laboratory microcosms — Eur. J. Soil Biol. 31: 111–118.
- [40] Uvarov A. V. 1998 — Respiration activity of Dendrobaena octaedra (Lumbricidae) under constant and diurnally fluctuating temperature regimes in laboratory microcosms — Eur. J. Soil Biol. 34: 1–10.
- [41] Uvarov A. V. 2009 — Inter- and intraspecific interactions in lumbricid earthworms: Their role for earthworm performance and ecosystem functioning — Pedobiologia, 53: 1–27.
- [42] Uvarov A. V., Scheu S. 2004 — Effects of developmental stage and temperature regime on respiration rate of Lumbricus rubellus (Lumbricidae) — Pedobiologia, 48: 365–371.
- [43] Uvarov A. V., Scheu S. 2005 — Effects of group maintenance and temperature regime on respiratory activity of epigeic earthworms, Dendrobaena octaedra and Lumbricus rubellus (Lumbricidae) — Eur. J. Soil Biol. 40: 163–167.
- [44] Uvarov A. V., Tiunov A. V., Scheu S. 2006 — Long-term effects of seasonal and diurnal temperature fluctuations on carbon dioxide efflux from a forest soil — Soil Biol. Biochem. 38: 3387–3397.
- [45] Uvarov A. V., Tiunov A. V., Scheu S. 2011 — Effects of seasonal and diurnal temperature fluctuations on population dynamics of two epigeic earthworm species in forest soil — Soil Biol. Biochem. 43: 559–570.
- [46] Vetter S., Fox O., Ekschmitt K., Wolters V. 2004 — Limitations of faunal effects on soil carbon flow: density dependence, biotic regulation and mutual inhibition — Soil Biol. Biochem. 36: 387–397.
- [47] Wessells M. L. S., Bohlen P. J., McCartney D. A., Subler S., Edwards C. A. 1997 — Earthworm effects on soil respiration in corn ecosystems receiving different nutrient inputs — Soil Biol. Biochem. 29: 409–412.
- [48] Winkler J. P., Cherry R. S., Schlesinger W. H. 1996 — The Q10 relationship of microbial respiration in a temperate forest soil — Soil Biol. Biochem. 28: 1067–1072.
- [49] Xia L., Szlavecz K., Swan C. M., Burgess J. L. 2011 — Inter- and intra-specific interactions of Lumbricus rubellus (Hoffmeister, 1843) and Octolasion lacteum (Örley, 1881) (Lumbricidae) and the implication for C cycling — Soil Biol. Biochem. 43: 1584–1590.
- [50] Zibres L., Thonart Ph., Haubruge, E., 2012 — Microscale interactions between earthworms and microorganisms: a review — Biotechnol. Agron. Soc. Environ. 16: 125–131.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-31fe5b2d-d4be-4ceb-a212-6fe046089fbb