Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | R. 57, nr 3 | 21--28
Tytuł artykułu

Mapy struktur przepływu dwufazowego w procesie skraplania, cz.1 – przegląd literatury

Warianty tytułu
EN
Maps of two-phase flow structures in the condensation process, part 1 - literature review
Języki publikacji
PL
Abstrakty
PL
Mapy struktur przepływu pozwalają na łatwą identyfikację rodzaju przepływu dwufazowego bez wglądu do wnętrza kanału. Znajomość struktury przepływu pozwala na optymalizację parametrów pracy parowników i skraplaczy chłodniczych. Jest to związane z faktem, że pewne struktury intensyfikują wymianę ciepła, a inne ją hamują. Podobnie jest z oporami przepływu, co jest bezpośrednio związane z energochłonnością układu chłodniczego lub klimatyzacyjnego. W części pierwszej artykułu zaprezentowano przegląd literatury dotyczący konstrukcji map struktur przepływu dwufazowego nieadiabatycznego. Przedstawiono najważniejsze mapy zarówno dla procesu skraplania w kanałach konwencjonalnych, jak i minikanałach. W części drugiej opisano wyniki badań własnych struktur przepływu dwufazowego podczas skraplania w minikanałach.
EN
Flow structure maps allow to easily identify the type of two-phase flow without looking inside the channel. The knowledge of the flow structure allows for optimizing the operating parameters of evaporators and refrigeration condensers. This is because some structures intensify heat transfer, while others inhibit it. It is similar to the flow resistance, which is directly related to the energy consumption of the refrigeration or air-conditioning system. The first part of the article presents a literature review on the construction of maps of nonadiabatic two-phase flow structures. The most important maps for the condensation process in conventional and mini-channels are presented. The second part describes the results of our studies of two-phase flow structures during condensation in mini-channels.
Wydawca

Rocznik
Strony
21--28
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
  • Politechnika Koszalińska, Katedra Energetyki
  • Politechnika Koszalińska, Katedra Energetyki
  • Politechnika Koszalińska, Katedra Energetyki
Bibliografia
  • [1] Breber G, Palen JW, Taborek J. Prediction of Horizontal Tubeside Condensation of Pure Components Using Flow Regime Criteria. J Heat Transfer 1980;102:471– 6. https:/doi.org/10.1115/1.3244325.
  • [2] Soliman HM. On the annular-to-wavy flow pattern transition during condensation inside horizontal tubes. Can J Chem Eng 1982;60:475–81. https:/doi. org/10.1002/cjce.5450600405.
  • [3] Soliman HM. The mist-annular transition during condensation and its influence on the heat transfer mechanism. Int J Multiph Flow 1986;12:277–88. https:/ doi.org/10.1016/0301-9322(86)90030-3.
  • [4] Tandon TN, Varma HK, Gupta CP. A New Flow Regimes Map for Condensation Inside Horizontal Tubes. J Heat Transfer 1982;104:763–8. https:/doi. org/10.1115/1.3245197.
  • [5] Taitel Y, Dukler AE. A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE J 1976;22:47–55. https:/doi. org/10.1002/aic.690220105.
  • [6] Steiner D. Heat transfer to boiling saturated liquids. VDI heat atlas, 1993.
  • [7] Xiao J, Hrnjak P. A flow regime map for condensation in macro and micro tubes with non-equilibrium effects taken into account. Int J Heat Mass Transf 2019;130:893–900. https:/doi.org/10.1016/j.ijheatmasstransfer.2018.10.081.
  • [8] Coleman JW, Garimella S. Two-phase flow regimes in round, square and rectangular tubes during condensation of refrigerant R134a. Int J Refrig 2003;26:117–28. https:/doi.org/10.1016/S0140-7007(02)00013-0.
  • [9] Garimella S. Condensation Flow Mechanisms in Microchannels: Basis for Pressure Drop and Heat Transfer Models. Heat Transf Eng 2004;25:104–16. https:/doi.org/10.1080/01457630490280489.
  • [10] Łukaszuk M. Experimental investigation of two-phase steam flux In horizontal channels of small diameter. Heat Transf Eng 2010;31:331–4.
  • [11] Ewing M.E., Weinandy J.J. CRN. Observations of two-phase flow patterns in a horizontal circular channel. Heat Transf Eng 1999;20:9–14.
  • [12] Tabatabai A, Faghri A. A New Two-Phase Flow Map and Transition Boundary Accounting for Surface Tension Effects in .... J Heat Transfer 2001.
  • [13] Akbar MK, Plummer DA, Ghiaasiaan SM. On gas–liquid two-phase flow regimes in microchannels. Int J Multiph Flow 2003;29:855–65. https:/doi.org/10.1016/ S0301-9322(03)00043-0.
  • [14] Wang WC, Ma XH, Wei ZD, Yu P. Two-phase flow patterns and transition characteristics for in-tube condensation with different surface inclinations. Int J Heat Mass Transf 1998;41:4341–9. https:/doi.org/10.1016/S0017- 9310(98)00041-6.
  • [15] Kattan N, Thome JR, Favrat D. Flow Boiling in Horizontal Tubes: Part 1— Development of a Diabatic Two-Phase Flow Pattern Map. J Heat Transfer 1998;120:140. https:/doi.org/10.1115/1.2830037.
  • [16] El Hajal J, Thome J., Cavallini A. Condensation in horizontal tubes, part 1: two- phase flow pattern map. Int J Heat Mass Transf 2003;46:3349–63. https:/doi. org/10.1016/S0017-9310(03)00139-X.
  • [17] Hibiki T, Mishima K. Flow regime transition criteria for upward two-phase flow in vertical narrow rectangular channels. Nucl Eng Des 2001;203:117–31. https:/doi.org/10.1016/S0029-5493(00)00306-X.
  • [18] Mishima K, Hibiki T, Nishihara H. Some characteristics of gas-liquid flow in narrow rectangular ducts. Int J Multiph Flow 1993;19:115–24. https:/doi. org/10.1016/0301-9322(93)90027-R.
  • [19] Cavallini A, Censi G, Col D Del, Doretti L, Longo G, Rossetto L. Condensation of Halogenated Refrigerants Inside Smooth Tubes. HVAC&R Res 2002;8:429–51. https:/doi.org/10.1080/10789669.2002.10391299.
  • [20] Thome JR. Chapter 8 Condensation Inside Tubes. Wolverine Tube Inc.; 2006.
  • [21] Olivier JA, Liebenberg L,Thome JR, Meyer JP. Heat transfer, pressure drop, and flow pattern recognition during condensation inside smooth, helical micro-fin, and herringbone tubes. Int J Refrig 2007;30:609–23. https:/doi.org/10.1016/j. ijrefrig.2006.11.003.
  • [22] Kandlikar, S.G., Garimella, S., Li,D., Colin, S., King MR. Heat transfer and fluid flow in minichannels and microchannels. Elsevier Inc.; 2006.
  • [23] Kim S-M, Kim J, Mudawar I. Flow condensation in parallel micro-channels? Part 1: Experimental results and assessment of pressure drop correlations. Int J Heat Mass Transf 2012;55:971–83. https:/doi.org/10.1016/j.ijheatmasstransfer.2011.10.013.
  • [24] Kim S-M, Mudawar I. Flow condensation in parallel micro-channels ? Part 2: Heat transfer results and correlation technique. Int J Heat Mass Transf 2012;55:984–94. https:/doi.org/10.1016/j.ijheatmasstransfer.2011.10.012.
  • [25] Jige D, Kikuchi S, Eda H, Inoue N, Koyama S. Two-phase flow characteristics of R32 in horizontal multiport minichannels: Flow visualization and development of flow regime map. Int J Refrig 2018;95:156–64. https:/doi.org/10.1016/j. ijrefrig.2018.09.005.
  • [26] Nasrfard H, Rahimzadeh H, Ahmadpour A, Naderan H. Experimental study of condensation heat transfer for R141b in intermittent flow regime within a smooth horizontal tube. Exp Therm Fluid Sci 2019;105:109–22. https:/doi. org/10.1016/j.expthermflusci.2019.03.019.
  • [27] Enoki K, Mori H, Miyata K, Hamamoto Y. Flow patterns of the Vapor-liquid two phase flow in small tubes. Trans of the JSRAE 2013.
  • [28] Chen L, Tian YS, Karayiannis TG. The effect of tube diameter on vertical two- phase flow regimes in small tubes. Int J Heat Mass Transf 2006;49:4220–30. https:/doi.org/10.1016/j.ijheatmasstransfer.2006.03.025.
  • [29] Nema G, Garimella S, Fronk BM. Flow regime transitions during condensation in microchannels. Int J Refrig 2014;40:227–40. https:/doi.org/10.1016/j.ijrefrig.2013.11.018.
  • [30] Garimella Srinivas FBM. Encyclopedia of two-phase heat transfer and flow I. Fundamentals and Methods II. Condensation heat transfer. World Scientific; 2016.
  • [31] Zhuang X, Gong M, Chen G, Zou X, Shen J. Two-phase flow pattern map for R170 in a horizontal smooth tube. Int J Heat Mass Transf 2016;102:1141–9. https:/doi.org/10.1016/j.ijheatmasstransfer.2016.06.094.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-31d53f98-fafb-4d8f-8026-3cb0120b35a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.