Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 6, nr 3 | 104--112
Tytuł artykułu

Influence of structural characteristics of porous materials on the coefficient of thermal conductivity

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The existing dependences of the effective coefficient of thermal conductivity of the material depending on the size and location of pores in it are analyzed and compared with each other and with previously obtained experimental data. It is shown that the resulting thermophysical properties of the material are affected not only by the porosity, but also by the location of the pores in the volume of the material. The disadvantages of the existing dependences of determining the effective thermal conductivity of the material on the type of porosity (both for porous material and for dispersed systems) are shown. Also, the most reliable dependences of the thermal conductivity coefficients on the porosity of dispersed systems for backfill materials and the need for their correction by empirical coefficients are determined. Complex indicators that fully describe the porous structure and on which the mathematical model of heat exchange processes in a porous medium should be based are proposed.
Wydawca

Rocznik
Strony
104--112
Opis fizyczny
Bibliogr. 10 poz., rys., tab., wykr., wzory
Twórcy
Bibliografia
  • Hamdami N., Monteau J.-Y., Bail A.L., 2004, Transport properties of a high porosity model food at above and sub-freezing temperatures. Pt 1. Properties and water activity, J. Food Eng., vol. 62, No. 4, pp. 373-383.
  • Liang Y., Wu D., Fu R., 2013, Carbon microfibers with hierarchical porous structure from electrospun fiber-like natural biopolymer. Scientific reports. Т. 3, p. 1119.
  • Lowell S., Shields J.E., 2013, Powder surface area and porosity. Springer Science & Business Media, Т. 2.
  • Fugallo G. et al., Thermal conductivity of graphene and graphite: collective.
  • Pavlenko A., Deshko V.I., Cheilytko A.O., Sukhodub I., 2020, Efficiency of using energy in the housing sector, monografie. Kielce University of Technology. 147 p.
  • Pavlenko A., 2014, Basis of forming pores in the material based on argil and their effect on thermal conductivity.
  • Pavlenko A., Cheylyitko A., Energy saving and ration Nature Use. Kazimierz Pułaski University of Technology and Humanities in Radom, Poltava National Technical Yuri Kondratyuk University. No. 2(3), pp. 81-84.
  • Rudobashta S.P., Zueva G.A., Zuev N.A., 2015, Hygroscopic Properties of Seeds. Izvestiya Vysshikh Uchebnykh Zavedenii. Seriya Khimiya i Khimicheskaya Tekhnologiya. Т. 58. No. 1.
  • Säckel W., Nieken U., 2016, Structure Formation within Spray-Dried Droplets; Mathematical Modelling of Spray Polymerisation. Process-Spray. Springer International Publishing, pp. 89-125.
  • Zhang C. et al., 2015, MHD flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction. Applied Mathematical Modelling. Т. 39. No. 1, p. 165-181.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-31b9112d-9d82-4a0e-bbc5-7795a90c8bb9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.