Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 73, nr 4 | 961--976
Tytuł artykułu

A comparative study of virtual synchronous generator and sinusoidal pulse width modulation in a wind highpower conversion chain

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The virtual synchronous generator (VSG) and sinusoidal pulse width modulation (SPWM) are two prominent control strategies that have attracted particular interest recently. In this paper, we compare these two inverter control strategies in a 5MW wind power conversion chain. The studied conversion chain includes a wind turbine, a permanent magnet synchronous generator, the power converters, namely the uncontrolled rectifier, and a two-stage inverter connected to the grid via an LCL filter. Our study of the two control methods shows that both strategies reduce the total harmonic distortion (THD) while respecting the grid connection conditions. The simulation results manifest that the VSG strategy has a better THD reduction of 0.99 % which is improved compared to the SPWM with a THD of 1.33%.
Wydawca

Rocznik
Strony
961--976
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr., wz.
Twórcy
  • Team of Automatic and Energy Conversion, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco, elmaataoui.wijdane@gmail.com
  • Automatic, Intelligent Systems and Information Systems Team, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
  • Team of Automatic and Energy Conversion, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
  • Laboratory of Industrial Engineering, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
Bibliografia
  • [1] Dahbi A., Nait-Said N., Nait-Said M., A novel combined MPPT-pitch angle control for wide range variable speed wind turbine based on neural network, International Journal of Hydrogen Energy, vol. 41, iss. 22, pp. 9427–9442 (2016), DOI: 10.1016/j.ijhydene.2016.03.105.
  • [2] Krishnama Raju S., Pillai G.N., Design and real time implementation of type-2 fuzzy vector control for DFIG based wind generators, Renewable Energy, vol. 88, pp. 40–50 (2016), DOI: 10.1016/j.renene.2015.11.006.
  • [3] Nguyen D., Fujita G., Analysis of sensorless MPPT method for hybrid PV-Wind system using DFIG Wind Turbines, Sustainable Energy, Grids and Networks, vol. 5, pp. 50–57 (2016), DOI: 10.1016/j.segan.2015.11.001.
  • [4] Gao Z., Liu X., An Overview on Fault Diagnosis, Prognosis and Resilient Control for Wind Turbine Systems, Processes 9, no. 2, 300 (2021), DOI: 10.3390/pr9020300.
  • [5] Abdullah M.A., Yatim A.H.M., Tan C.W., Saidur R., A review of maximum power point tracking algorithms for wind energy systems, Renewable and Sustainable Energy Reviews, vol. 16, iss. 5, pp. 3220–3227 (2012), DOI: 10.1016/j.rser.2012.02.016.
  • [6] Yin M., Li W., Chung C.Y., Zhou L., Chen Z., Zou Y., Optimal torque control based on effective tracking range for maximum power point tracking of wind turbines under varying wind conditions, Iet Renewable Power Generation, vol. 11, no. 4, pp. 501–510 (2017), DOI: 10.1049/iet-rpg.2016.0635.
  • [7] Meghni B., Chojaa H., Boulmaiz A., An Optimal Torque Control based on Intelligent Tracking Range (MPPT-OTC-ANN) for Permanent Magnet Direct Drive WECS, IEEE 2nd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS), Kenitra, Morocco, pp. 1–6 (2020), DOI: 10.1109/ICECOCS50124.2020.9314304.
  • [8] Abdolrasol M.G., Hannan M., Hussain S.S., Ustun T.S., Optimal PI controller based PSO optimization for PV inverter using SPWM techniques, Energy Reports, vol. 8, supplement 1, pp. 1003–1011 (2022), DOI: 10.1016/j.egyr.2021.11.180.
  • [9] Sarker R., Datta A., Debnath S., FPGA-based variable modulation-indexed-SPWM generator architecture for constant-output-voltage inverter applications, Microprocessors and Microsystems, vol. 77, 103123 (2020), DOI: 10.1016/j.micpro.2020.103123.
  • [10] Bao F., Guo J., Wang W., Li G., Wang B., Microgrid’s multi-VSGs cooperative control method based on distributed communication, Energy Reports, vol. 8, supplement 5, pp. 384–392 (2022), DOI: 10.1016/j.egyr.2022.02.191.
  • [11] Chen S., Sun Y., Han H., Luo Z., Shi G., Yuan L., Guerrero J.M., Active power oscillation suppression and dynamic performance improvement for multi-VSG grids based on consensus control via COI frequency, International Journal of Electrical Power & Energy System, vol. 147, 108796 (2023), DOI: 10.1016/j.ijepes.2022.108796.
  • [12] Li L., Sun Y., Liu Y., Tian P., Shen S., A communication-free adaptive virtual inertia control of cascaded-type VSGs for power oscillation suppression, International Journal of Electrical Power & Energy Systems, vol. 149, 109034 (2023), DOI: 10.1016/j.ijepes.2023.109034.
  • [13] Lin J., Liu S., Tian M., Huang M., Wang G., Power oscillation suppression of multi-VSG based on both consensus and model predictive control, International Journal of Electrical Power & Energy Systems, 109459 (2023), DOI: 10.1016/j.ijepes.2023.109459.
  • [14] Dattaa D., Sarker S.K., Rafiqul Islam Sheikh Md., Designing a unified damping and cross-coupling rejection controller for LCL filtered PV-based islanded microgrids, Engineering Science and Technology, International Journal, vol. 35, 101244 (2022), DOI: 10.1016/j.jestch.2022.101244.
  • [15] Ben Saïd-Romdhane M., Naouar M.W., Belkhodja I.S., Monmasson E., Simple and systematic LCL filter design for three-phase grid-connected power converters, Mathematics and Computers in Simulation, vol. 130, pp. 181–193 (2016), DOI: 10.1016/j.matcom.2015.09.011.
  • [16] Rashid T.H.M.S., Routh A.K., Rana M.R., Ferdous A.H.M.I., Sayed R., A Novel Approach to Maximize Performance and Reliability of PMSG Based Wind Turbine: Bangladesh Perspective, American Journal of Engineering Research (AJER), e-ISSN: 2320-0847, p-ISSN: 2320-0936, vol. 7, iss. 6, pp. 17–26 (2018).
  • [17] Camara M.S., Camara M.B., Dakyo B., Gualous H., Modélisation et commande d’une génératrice synchrone à aimant permanant pour la production et l’injection des énergies offshores dans un réseau, Symposium de Génie Électrique 2014, Cachan, France (2014).
  • [18] Dali A., Abdelmalek S., Bakdi A., Bettayeb M., A new robust control scheme: Application for MPP tracking of a PMSG-based variable-speed wind turbine, Renewable Energy, vol. 172, pp. 1021–1034 (2021) DOI: 10.1016/j.renene.2021.03.083.
  • [19] El Maataoui W., El Daoudi S., Lazrak L., Mabrouki M., Minimized total harmonic distortion of a multilevel inverter of a wind power conversion chain synchronized to the grid-LCL filter optimization and third harmonic cancellation, Electrica, vol. 22, no.°1, pp. 27–40 (2022) DOI: 10.5152/electrica.2021.21086.
  • [20] El Maataoui W., El Daoudi S., Lazrak L., Mabrouki M., Improved Performance of the Grid Side Power Conversion Chain by Adopting Multilevel Inverter Topologies with an Optimized LCL Filter, In: Motahhir S., Bossoufi B., (eds) Digital Technologies and Applications, ICDTA 2022, Lecture Notes in Networks and Systems, Springer, Cham, vol. 455 (2022), DOI: 10.1007/978-3-031-02447-4_52.
  • [21] Yan T., Wang C., Liu Z., Xu S., Ba Y., Fei J., Lin J.Y.S., Research on pre-synchronization control strategy of the micro-grid with multi-VSG, Global Energy Interconnection, vol. 1, iss. 3, pp. 376–381 (2018), DOI: 10.14171/j.2096-5117.gei.2018.03.009.
  • [22] Xiong K., Hu W., Zhang G., Zhang Z., Chen Z., Deep reinforcement learning based parameter self-tuning control strategy for VSG, Energy Reports, vol. 8, supplement 5, pp. 219–226 (2022), DOI: 10.1016/j.egyr.2022.02.147.
  • [23] Wu H., Ruan X., Yang D., Chen X., Zhao W., Lv Z., Zhong Q.C., Small-Signal Modeling and Parameters Design for Virtual Synchronous Generators, IEEE Transactions on Industrial Electronics, vol. 63, no. 7, pp. 4292–4303 (2016), DOI: 10.1109/TIE.2016.2543181.
  • [24] Liu J., Rafi F., Lu J., Hossain M.J., Neutral Current Compensation in a VSG-Based Three-Phase Four-Wire Microgrid System, IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, Italy, pp. 1–6 (2018), DOI: 10.1109/EEEIC.2018.8494488.
  • [25] Wang D., Wu H., Application of Virtual Synchronous Generator Technology in Microgrid, IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, pp. 3142–3148 (2016), DOI: 10.1109/IPEMC.2016.7512798.
  • [26] Ur Rehman H., Yan X., Abdelbaky M.A., Ullah Jan M., Iqbal S., An advanced virtual synchronous generator control technique for frequency regulation of grid-connected PV system, International Journal of Electrical Power & Energy Systems, vol. 125, 106440 (2021), DOI: 10.1016/j.ijepes.2020.106440.
  • [27] Li S., Haskew T.A., Swatloski R.P., Gathings W., Optimal and Direct-Current Vector Control of Direct Driven PMSG Wind Turbines, IEEE Transactions on Power Electronics, vol. 27, iss. 5, pp. 2325–2337 (2012), DOI: 10.1109/TPEL.2011.2174254.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-31adb2d1-1a55-4b0a-b854-467200e20319
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.