Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2023 | Vol. 71, no. 5 | 2439--2464
Tytuł artykułu

Investigation of aquifer vulnerability and sensitivity analysis of modified drastic and sintacs models: a case study of Ovogovo Area, Eastern Nigeria

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Groundwater serves as a useful source of freshwater to man. Its protection and assessment of potential exposure to contamination are imperative, as its remediation when contaminated is extremely challenging. Vertical electrical sounding was carried out in twenty (21) locations of Ovogovo area with the aim to evaluate the vulnerability of groundwater to pollution, using four vulnerability indexed-based models. Results from DRASTIC AND SINTACS models delineated low and moderate vulnerable zones, while DRASTICLu and SINTACSLu, establishing an index range of 177 to 191 and 160 to 174, respectively, delineated eleven (11) locations as highly vulnerable to contamination. The four models characterized six locations as moderately vulnerable. Statistical summary of DRASTICLu and SINTACSLu models identified high risk of aquifer contamination to originate from recharge and soil media, with a very low risk of contamination, emanating from nature of vadose zone, aquifer nature, topography and land use. Results from single parameter sensitivity and map removal analysis for the modified models delineated depth to water table and land use as the most sensitive parameters in vulnerability assessment of Ovogovo area. Single or multiple map removal analysis identified an increment in sensitivity to vulnerability index as more parameters were being removed. The integration of these vulnerability models and sensitivity analysis enhanced good interpretation of the estimated vulnerable zones. These results will serve as a guide to governmental and non-governmental bodies in understanding the Ovogovo groundwater vulnerability characteristics and sensitization of habitants against indiscriminate disposal of waste and other harmful contaminants for preservation of its groundwater.
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Strony
2439--2464
Opis fizyczny
Bibliogr. 62 poz., rys., tab.
Twórcy
  • Department of Physics and Astronomy, University of Nigeria, Nsukka, Nigeria
  • Department of Physics and Astronomy, University of Nigeria, Nsukka, Nigeria
  • Department of Physics and Astronomy, University of Nigeria, Nsukka, Nigeria
  • Department of Physics and Astronomy, University of Nigeria, Nsukka, Nigeria
  • Department of Business Management, University of Nigeria, Nsukka, Nigeria
Bibliografia
  • 1. Abdeslam I, Fehdi C, Djabri L (2017) Application of drastic method for determining the vulnerability of an alluvial aquifer: Morsott - El Aouinet north east of Algeria: using arcgis environment. Energy Procedia 119:308–317. https://doi.org/10.1016/j.egypro.2017.07.114
  • 2. Akinlalu AA, Mogaji KA, Adebodun TS (2021) Assessment of aquifer vulnerability using a developed “GODL” method (Modified GOD Model) in a Schist Belt environ, Southwestern Nigeria. Environ Monit Asses. https://doi.org/10.1007/s10661-021-08960-z
  • 3. Aleke CG, Ibuot JC, Obiora DN (2018) Application of electrical resistivity method in estimating geohydraulic properties of a sandy hydrolithofacies: a case study of Ajali Sandstone in Ninth mile, Enugu State. Niger Arab J Geosci 11:322. https://doi.org/10.1007/s12517-018-3638-8
  • 4. Aller L, Bennett T, Lehr JH, Petty R (1986) DRASTIC: a system to evaluate the pollution potential of hydrogeologic settings by pesticides. In: Garner WY, Honeycutt RC, Nigg HN (eds) evaluation of pesticides in ground water. American Chemical Society, Washington, DC, pp 141–158. https://doi.org/10.1021/bk-1986-0315.ch008
  • 5. Amiri F, Tabatabaie T, Entezari M (2020) GIS-based DRASTIC and modified DRASTIC techniques for assessing groundwater vulnerability to pollution in Torghabeh-Shandiz of Khorasan County, Iran. Arab J Geosci. https://doi.org/10.1007/s12517-020-05445-0
  • 6. Aniwetalu E, Anakwuba E, Ilechukwu J (2021) Velocity anisotropy and trend in Niger Delta, Nigeria. J Petrol Explor Prod Technol 11(4):1667–1678. https://doi.org/10.1007/s13202-021-01136-y
  • 7. Awawdeh MU, Al-Kharbsheh N, Obeidat M, Awawdeh MO (2020) Groundwater vulnerability assessment using modified SINTACS model in Wadi Shueib. Jordan Annal GIS 26(4):377–394. https://doi.org/10.1080/19475683.2020.1773535
  • 8. Baalousha H (2010) Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: a case study from Heretaunga Plains, New Zealand. Agric Water Manage 97:240–246
  • 9. Babika ZM, Bryant LD, Kieldsen TR, Tukur AI (2022) Groundwater vulnerability and sensitivity optimization using geographical information system for kano metropolis, north-western nigeria. J Geosci Environ Protect 10(04):202–226. https://doi.org/10.4236/gep.2022.104013
  • 10. Babiker IS, Mohamed MAA, Hiyama T, Kato K (2005) A GIS-Based DRASTIC model for assessing aquifer vulnerability in kakamigahara heights, gifu prefecture, central Japan. Sci Total Environ 345:127–140. https://doi.org/10.1016/j.scitotenv.2004.11.005
  • 11. Barbulescu A (2020) Assessing groundwater vulnerability: DRASTIC and DRASTIC-like methods: a review. Water 12(5):1356. https://doi.org/10.3390/w12051356
  • 12. Civita M, De Maio M (1997) SINTACS. Un Sistema parametrico per la valutazione e la cartografia della vulnerabilita’ degli acquiferi all’inquinamento. metodologia and automatizzazione; Pitagora: Bologna, Italy.
  • 13. Civita M, De Maio M (2000) SINTACS R5-Valutazione e cartografia automatica della vulnerabilità degli acquiferi all’inquinamento con il sistema parametrico; Pitagora: Bologna, Italy, p226–232.
  • 14. Civita M (1994) Le Carte délia Vulnerabilitâdegli Acquiferiall'Inqulnamento. TeoriaiPratica (Aquifer vulnerability maps to pollution). Pitagora Ed. (publisher), Bologna.
  • 15. Das M (2013) Impact of population growth on groundwater quality- A case study in urban india. Fresenius Environ Bull 22:10
  • 16. Ebiegberi O, Oludayo AI (2021) Effect of grain Size distribution on field resisitivity values of unconsolidated sediments. J Res Environ Earth Sci 7:12–18
  • 17. Edogbo B, Okolocha E, Maikai B, Aluwong T, Zakari F, Uchendu C (2020) Assessment of potentially toxic elements in soils, water and vegetables around river Salanta Area of Kano State, Nigeria: health risk analysis. Chem Afr 3:469–478
  • 18. Ekanem AM, Ikpe EO, George NJ, Thomas JE (2022) Integrating geoelectrical and geological techniques in GIS-based DRASTIC model of groundwater vulnerability potential in the raffia city of Ikot Ekpene and its environs, southern Nigeria. Inter J Energy Water Res. https://doi.org/10.1007/s42108-022-00202-3
  • 19. Ekanem AM (2020) Georesistivity modelling and appraisal of soil water retention capacity in akwa ibom state university main campus and its environs, Southern Nigeria. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-020-00850-
  • 20. Eugene-Okorie JO, Obiora DN, Ibuot JC, Ugbor DO (2020) Geoelectrical investigation of groundwater potential and vulnerability of Oraifite, Anambra State. Niger Appl Water Sci 10(10):1–14. https://doi.org/10.1007/s13201-020-01304-1
  • 21. Fannakh A, Farsang F (2022) DRASTIC, GOD, and SI approaches for assessing groundwater vulnerability to pollution: a review Envin Sci Eur (2022) 34:77https://doi.org/10.1186/s12302-022-00646-8
  • 22. Fard et al (2022) Automatic seismic image segmentation by introducing a novel strategy in histogram of oriented gradients. J Petrol Sci Eng 209:109971
  • 23. Fetter CW (1994). Applied hydrogeology (3rd ed., p. 600). Prentice Hall Inc.
  • 24. Foster E, Hirata (1987) Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In: Van Duijvenbooden W, Van Waegeningh HG (eds), Vulnerability of soil and groundwater to pollutants. Proc Inf TNO Comm Hydrol Res, The Hague 38:69–86.
  • 25. Foster SSD, Chilton PJ (2003) Groundwater: the processes and global significance of aquifer degradation. Philos Trans R Soc Lond B 358:1957–1972
  • 26. Foster SSD, Hirata RCA, Gomes D, D’elia M, Paris M (2002) Quality protection groundwater: guide for water service companies, municipal authorities and environment agencies. World Bank, Washington, DC. https://doi.org/10.1596/0-8213-4951-1.
  • 27. Frind EO, Moslson JW, Ruddolph DL (2006) Well vulnerability: a quantitative approach for source water protection. Groundwater 44(5):732–742
  • 28. George NJ (2021) Integrating hydrogeological and second-order geo-electric indices in groundwater vulnerability mapping: A case study of alluvial environments. Appl Water Sci 11:123. https://doi.org/10.1007/s13201-021-01437-x
  • 29. George NJ, Ibanga JI, Ubom AI (2015) Geoelectrohydrogeological indices of evidence of ingress of saline water into freshwater in parts of coastal aquifers of Ikot Abasi. South Niger J Afri Earth Sci 109:37–46
  • 30. Ibuot JC, George NJ, Okwesili AN, Obiora DN (2019) Investigation of litho-textural characteristics of aquifer in Nkanu West Local Government Area of Enugu state, southeastern Nigeria. J Afr Earth Sc 157:197–2017. https://doi.org/10.1016/j.jafrearsci.2019.03.004
  • 31. Igwenagu C (2015) Trend analysis of rainfall pattern in Enugu State, Nigeria. Euro J. of Statistics and prob 3(3):12–18
  • 32. Iloeje NP (1995) A new geography of Nigeria Revised Ed. Longman Nig. Ltd. p 45–50. https://doi.org/10.4236/am.2018.912088
  • 33. Jawarneh R, Biradar C (2017) Decadal National Land Cover Database for Jordan at 30 Resolution. Arab J Geosci 10:483. https://doi.org/10.1007/s12517-017-3266-8
  • 34. Khemiri Sami, Khnissi Afef, Alaya Mohsen Ben, Saidi Salwa, Zargouni Fouad (2013) Using GIS for the comparison of intrinsic parametric methods assessment of groundwater vulnerability to pollution in scenarios of semi arid climate. the case of foussana groundwater in the central of Tunisia. J Water Res Protect 05(08):835–845. https://doi.org/10.4236/jwarp.2013.58084
  • 35. Li P, Karunanidhi D, Subramani T, Srinivasamoorty K (2021) Sources and consequences of groundwater contamination. Achiv. Envirn Cont Toxicl 80:1–10
  • 36. Lodwick WA, Monson W, Svoboda L (1990) Attribute error and sensitivity analysis of map operations in geographical informations systems: Suitability analysis. Inter J Geograph Inform Syst 4:413–428. https://doi.org/10.1080/02693799008941556
  • 37. Majandang J, Sarapirome S (2012) Groundwater vulnerability assessment and sensitivity analysis in Nong Rua, Khon Kaen, Thailand, using a GIS-Based SINTACS Model. Environ Earth Sci 68:2025–2039
  • 38. Maria R (2017) Comparative studies of groundwater vulnerability assessment. Earth Envirn Sci. https://doi.org/10.1088/1755-1315/118/1/012018
  • 39. Mosbahi M, Benabdallah S, Boussema MR (2015) Sensitivity analysis of a GIS-based model: a case study of a large semi-arid catchment. Earth Sci Inf 8:569–581. https://doi.org/10.1007/s12145-014-0176-0
  • 40. Napolitano P, Fabbri AG (1996) Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. application of geographic information systems in hydrology and water resources management (Proceedings of the Vienna Conference, April 1996), April 1996. IAHS Publ. 235, pp. 559–566
  • 41. Nasri S, Nejati A, Kahoo AR, Soleimani Monfared M (2020) New insights into the structural model of the Makran subduction zone by fusion of 3D inverted geophysical models. J Asian Earth Sci 188:104075. https://doi.org/10.1016/j.jseaes.2019.104075
  • 42. National Research Council (NRC) (1993) Ground water vulnerability assessment, contamination potential under conditions of uncertainty: National Academy Press (p. 210). D.C.
  • 43. National population commission census (2006) Report on nigeria national population commission. JSTOR 33:206–210. jstor.org/stable/25434601
  • 44. Nekum C, Azzam R (2009) Quantitative assessment of intrinsic groundwater vulnerability to contamination using numerical simulations. Sci Total Environ 408(2):245–254
  • 45. Nobre RCM, Filho OCR, Mansur WJ, Nobre MMM, Cosenza CAN (2007) Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool. J Contam Hydrol 94(3–4):277–292
  • 46. Noori R, Ghahremanzadeh H, Kløve B, Adamowski JF, Baghvand A (2018) Modified-DRASTIC, modified-SINTACS and SI methods for groundwater vulnerability assessment in the southern Tehran aquifer. J Environ Sci Health. https://doi.org/10.1080/10934529.2018.1537728
  • 47. Nowlan L (2005) Buried treasure: Groundwater permitting and pricing in Canada. Walter and Duncan Gordon Foundation, with case studies by Geological Survey of Canada, West Coast Environmental Law, and Sierra Legal Defence Fund Canada. ISBN 0-9737651-0-0
  • 48. Obiora DN, Ibuot JC (2019) Geophysical assessment of aquifer vulnerability and management: a case study of University of Nigeria, Nsukka, Enugu State. Appl Water Sci. https://doi.org/10.1007/s13201-019-1113-7
  • 49. Obiora DN, Ajala AE, Ibuot JC (2015) Evaluation of aquifer protective capacity of overburden unit and soil corrosivity in Makurdi, Benue state, Nigeria, using electrical resistivity method. J Earth Syst Sci 124(1):125–135
  • 50. Obiora DN, Ibuot JC, George NJ (2016) Evaluation of aquifer potential, geoelectric and hydraulic parameters in Ezza North, southeastern Nigeria, using geoelectric sounding. Int J Environ Sci Technol 13:435–444
  • 51. Ofomata GEK (1967) Some Observations on Relief and Erosion in Eastern Nigeria
  • 52. Oke SA (2017) an overview of aquifer vulnerability. In: Aquifers: properties, roles and research, pp 1–5 Revue deGeomorph, Dynamise. XVU, pp. 21–29
  • 53. Omeje ET, Obiora DN, Okeke FN, Ugbor DO, Ibuot JC (2022) Akpan AS (2022) Aquifer flow unit analysis using stratigraphic modified Lorenz plot: a case study of Edem, eastern Nigeria. J Eng Appl Sci 69:33. https://doi.org/10.1186/s44147-022-00081-9
  • 54. Oni TE, Omosuyi GO, Akinlalu AA (2017) Groundwater vulnerability assessment using hydrogeologic and geoelectric layer susceptibility indexing at Igbara Oke, southwestern Nigeria. NRIAG J Astron Geophy 6(2):452–458. https://doi.org/10.1016/j.nrjag.2017.04.009
  • 55. Petal P, Mehta D, Sharma N (2022) A review on the application of the DRASTIC method in the assessment of groundwater vulnerability. Water Supply 22:5–5190. https://doi.org/10.2166/ws.2022.126
  • 56. Piscopo G (2001) Groundwater Vulnerability Map, Explanatory Notes, Castlereagh Catchment, NSW. Department of Land and Water Conservation, Parramatta, Australia. http://www.water.nsw.gov.au/__data/assets/pdf_file/0008/549377/quality_groundwater_castlereagh_map_notes.pdf
  • 57. Salufu SO (2021) Impact of Sandstone Maturity on Groundwater Resistivity in Geophysical Groundwater Exploration in Parts of Edo Central and Agbor, Delta State, Nigeria. South Asian Res J Nat Product 4(2):1–2
  • 58. Secunda S, Collin ML, Melloul AJ (1998) Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel’s Sharon Region. J Environ Manage 54(1):39–57
  • 59. Shahab A, Shihua Q, Rad S, Souleymane Keita S, Khan M, Adnan S (2018) Groundwater vulnerability assessment using GIS-based DRASTIC method in the irrigated and coastal region of Sindh province. Pak Water Supply. https://doi.org/10.2166/nh.2018.001
  • 60. Stempvoort DV, Ewert L, Wassenaar L (1993) Aquifer vulnerability index: a GIS—compatible method for groundwater vulnerability mapping. Canad Water Resour J 18(1):25–37
  • 61. Umar GK, Yusuf DA, Mustapha A (2019) Urban Land Use, Planning and Historical Theories: An Overview of Kano Metropolis. World Sci News 118:257–264
  • 62. Zohdy AAR, Eaton GP, Mabey DR (1974) Application of surface geophysics to groundwater investigation. USGS Techniques of water resources investigations, Book 2, Chapter D1.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3182481f-3ed7-4b2f-b9e1-401da852887c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.