Czasopismo
2023
|
Vol. 23, no. 3
|
art. no. e151, 2023
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
It has been confirmed that structures with micro dimensions display size-dependent thermomechanical behaviors. Moreover, according to the findings of empirical and theoretical researches, thermoelastic damping (TED) has been recognized as one of inescapable causes of energy dissipation in microstructures. The current article is an effort to provide a novel size-dependent framework for approximating the amount of TED in microring resonators with rectangular cross section. To include size effect into structural and thermal constitutive relations, the modified couple stress theory (MCST) and the Moore–Gibson–Thompson (MGT) heat equation are utilized, respectively. By solving the coupled heat equation in the purview of MGT model, the fluctuation temperature throughout the ring is determined. By employing the obtained temperature distribution and constitutive relations of MCST, the peak values of strain and wasted thermal energies during one cycle of vibration are computed. Based on the description of TED in the energy dissipation (ED) method, a mathematical expression containing the scale parameters of MCST and MGT model is derived for estimating TED value. To ensure the correctness and veracity of the established solution, a comparative study is carried out on the basis of the data released by other researchers for more plain models. A section is also designated for an all-out study to ascertain the association between TED spectrum and some influential factors like scale parameters of MCST and MGT model, vibration mode number, one-dimensional (1D) and two-dimensional (2D) heat conduction, geometry and material. The extracted data enlighten that the impact of applying MCST and MGT model on TED has a close relationship with the vibration mode number of the ring.
Czasopismo
Rocznik
Tom
Strony
art. no. e151, 2023
Opis fizyczny
Bibliogr. 62 poz., wykr.
Twórcy
autor
- Chemical Engineering and Petroleum Industries Department, Al-Mustaqbal University College, Babylon 51001, Iraq
autor
- Medical technical college, Ahl Al Bayt University, Kerbala, Iraq
autor
- Medical technical college, Al-Farahidi University, Baghdad, Iraq
autor
- Scientific Research Center, Al-Nisour University College, Baghdad, Iraq
autor
- Medical technical department, Mazaya University College, Nasiriyah, Iraq
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq
autor
- Medical technical department, Al-Esraa University College, Baghdad, Iraq
autor
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia, malam@kku.edu.sa
Bibliografia
- 1. Walter B, Faucher M, Algré E, Legrand B, Boisgard R, Aimé JP, Buchaillot L. Design and operation of a silicon ring resonator for force sensing applications above 1 MHz. J Micromech Microeng 2009;19(11):115009. https://doi.org/10.1088/0960-1317/19/11/ 115009.
- 2. Xu KD, Guo YJ, Liu Y, Deng X, Chen Q, Ma Z. 60-GHz compact dual-mode on-chip bandpass filter using GaAs technology. IEEE Electron Device Lett. 2021;42(8):1120–3. https://doi.org/10.1109/ LED.2021.3091277.
- 3. Zangeneh-Nejad F, Safian R. A graphene-based THz ring reso- nator for label-free sensing. IEEE Sens J. 2016;16(11):4338–44. https://doi.org/10.1109/JSEN.2016.2548784.
- 4. Zhu T, Ding H, Wang C, Liu Y, Xiao S, Yang G, Yang B. Param- eters calibration of the GISSMO failure model for SUS301L-MT. Chinese J Mech Eng. 2023;36(1):1–12. https://doi.org/10.1186/ s10033-023-00844-2.
- 5. Rajasekar R, Robinson S. Nano-pressure and temperature sensor based on hexagonal photonic crystal ring resonator. Plasmonics. 2019;14:3–15. https://doi.org/10.1007/s11468-018-0771-x.
- 6. Shi J, Zhao B, He T, Tu L, Lu X, Xu H. Tribology and dynamic characteristics of textured journal-thrust coupled bearing con- sidering thermal and pressure coupled effects. Tribol Int. 2023;180:108292. https://doi.org/10.1016/j.triboint.2023.108292.
- 7. Eley R, Fox CHJ, McWilliam S. The dynamics of a vibrating-ring multi-axis rate gyroscope. Proc Inst Mech Eng C J Mech Eng Sci. 2000;214(12):1503–13. https://doi.org/10.1243/0954406001 523443.
- 8. Tao Y, Wu X, Xiao D, Wu Y, Cui H, Xi X, Zhu B. Design, anal- ysis and experiment of a novel ring vibratory gyroscope. Sens Actuators, A. 2011;168(2):286–99. https://doi.org/10.1016/j.sna. 2011.04.039.
- 9. Zhang C, Kordestani H, Shadabfar M. A combined review of vibration control strategies for high-speed trains and railway infra- structures: challenges and solutions. J Low Freq Noise, Vib Active Control. 2023;42(1):272–91. https://doi.org/10.1177/1461348422 1128682.
- 10. Hu ZX, Gallacher BJ, Burdess JS, Fell CP, Townsend K. A para- metrically amplified MEMS rate gyroscope. Sens Actuators, A. 2011;167(2):249–60. https://doi.org/10.1016/j.sna.2011.02.018.
- 11. Yan A, Li Z, Cui J, Huang Z, Ni T, Girard P, Wen X. LDAVPM: a latch design and algorithm-based verification protected against multiple-node-upsets in harsh radiation environments. IEEE Trans Comput Aided Des Integr Circuits Syst. 2022. https://doi.org/10. 1109/TCAD.2022.3213212.
- 12. Li B, Lee C. NEMS diaphragm sensors integrated with tri- ple-nano-ring resonator. Sens Actuators, A. 2011;172(1):61–8. https://doi.org/10.1016/j.sna.2011.02.028.
- 13. Zhou W, He J, Ran L, Chen L, Zhan L, Chen Q, Peng B. A piezo- electric microultrasonic motor with high q and good mode match. IEEE/ASME Transact Mechatron. 2021;26(4):1773–81. https:// doi.org/10.1109/TMECH.2021.3067774.
- 14. He Y, Zhang L, Tong MS. Microwave imaging of 3D dielectric- magnetic penetrable objects based on integral equation method. IEEE Trans Antennas Propag. 2023. https://doi.org/10.1109/TAP. 2023.3262299.
- 15. Ding Y, Zhu X, Xiao S, Hu H, Frandsen LH, Mortensen NA, Yvind K. Effective electro-optical modulation with high extinc- tion ratio by a graphene–silicon microring resonator. Nano Lett. 2015;15(7):4393–400. https://doi.org/10.1021/acs.nanolett.5b006 30.
- 16. Mindlin, R. D., & Tiersten, H. (1962). Effects of couple-stresses in linear elasticity. Columbia Univ New York.
- 17. Yang FACM, Chong ACM, Lam DCC, Tong P. Couple stress based strain gradient theory for elasticity. Int J Solids Struct. 2002;39(10):2731–43.
- 18. Eringen AC, Edelen D. On nonlocal elasticity. Int J Eng Sci. 1972;10(3):233–48.
- 19. Mindlin RD, Eshel N. On first strain-gradient theories in linear elasticity. Int J Solids Struct. 1968;4(1):109–24.
- 20. Lim CW, Zhang G, Reddy J. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propaga- tion. J Mech Phys Solids. 2015;78:298–313.
- 21. Yang Z, Lu H, Sahmani S, Safaei B. Isogeometric couple stress continuum-based linear and nonlinear flexural responses of func- tionally graded composite microplates with variable thickness. Arch Civil Mech Eng. 2021;21:1–19.
- 22. Mirtalebi SH, Ebrahimi-Mamaghani A, Ahmadian MT. Vibra- tion control and manufacturing of intelligibly designed axially functionally graded cantilevered macro/micro-tubes. IFAC-Paper- sOnLine. 2019;52(10):382–7.
- 23. Arshid E, Arshid H, Amir S, Mousavi SB. Free vibration and buckling analyses of FG porous sandwich curved microbeams in thermal environment under magnetic field based on modified couple stress theory. Arch Civil Mech Eng. 2021;21:1–23.
- 24. Li M, Cai Y, Bao L, Fan R, Zhang H, Wang H, Borjalilou V. Analytical and parametric analysis of thermoelastic damping in circular cylindrical nanoshells by capturing small-scale effect on both structure and heat conduction. Arch Civil Mech Eng. 2022;22:1–16.
- 25. Mirtalebi SH, Ahmadian MT, Ebrahimi-Mamaghani A. On the dynamics of micro-tubes conveying fluid on various foundations. SN Appl Sci. 2019;1:1–13.
- 26. Arefi M, Civalek O. Static analysis of functionally graded com- posite shells on elastic foundations with nonlocal elasticity theory. Arch Civil Mech Eng. 2020;20:1–17.
- 27. Panahi R, Asghari M, Borjalilou V. Nonlinear forced vibration analysis of micro-rotating shaft–disk systems through a formula- tion based on the nonlocal strain gradient theory. Arch Civil Mech Eng. 2023;23(2):1–32.
- 28. Xiao X, Zhang Q, Zheng J, Li Z. Analytical model for the nonlinear buckling responses of the confined polyhedral FGP- GPLs lining subjected to crown point loading. Eng Struct. 2023;282:115780. https:// doi. org/ 10. 1016/j. engst ruct. 2023. 115780.
- 29. Yue X, Yue X, Borjalilou V. Generalized thermoelasticity model of nonlocal strain gradient Timoshenko nanobeams. Arch Civil Mech Eng. 2021;21(3):124.
- 30. Yue XG, Sahmani S, Luo H, Safaei B. Nonlocal strain gradi- ent-based quasi-3D nonlinear dynamical stability behavior of agglomerated nanocomposite microbeams. Arch Civil Mech Eng. 2022;23(1):21.
- 31. Ebrahimi-Mamaghani A, Koochakianfard O, Mostoufi N, Khodaparast HH. Dynamics of spinning pipes conveying flow with internal elliptical cross-section surrounded by an external annular fluid by considering rotary inertia effects. App Math Model. 2023. https://doi.org/10.1016/j.apm.2023.03.043.
- 32. Sarparast H, Alibeigloo A, Borjalilou V, Koochakianfard O. Forced and free vibrational analysis of viscoelastic nanotubes conveying fluid subjected to moving load in hygro-thermo- magnetic environments with surface effects. Arch Civil Mech Eng. 2022;22(4):172.
- 33. Lord HW, Shulman Y. A generalized dynamical theory of ther- moelasticity. J Mech Phys Solids. 1967;15(5):299–309.
- 34. Green, A. E., & Naghdi, P. (1991). A re-examination of the basic postulates of thermomechanics Proceedings of the Royal Society of London. Series A Mathematical and Physical Sci- ences, 432(1885): 171–194.
- 35. Guyer RA, Krumhansl JA. Solution of the linearized phonon Boltzmann equation. Phys Rev. 1966;148(2):766.
- 36. Tzou DY. A unified field approach for heat conduction from macro-to micro-scales. J Heat Transfer. 1995;117(1):8–16.
- 37. Quintanilla R. Moore–Gibson–Thompson thermoelasticity. Math Mech Solids. 2019;24(12):4020–31.
- 38. Zener C. Internal friction in solids .I theory of internal friction in reeds. Phys Rev. 1937;52(3):230.
- 39. Lifshitz R, Roukes ML. Thermoelastic damping in micro-and nanomechanical systems. Phys Rev B. 2000;61(8):5600.
- 40. Zhou H, Li P, Fang Y. Thermoelastic damping in circular cross- section micro/nanobeam resonators with single-phase-lag time. Int J Mech Sci. 2018;142:583–94.
- 41. Li P, Fang Y, Hu R. Thermoelastic damping in rectan- gular and circular microplate resonators. J Sound Vib. 2012;331(3):721–33.
- 42. Fang Y, Li P. Thermoelastic damping in thin microrings with two- dimensional heat conduction. Physica E. 2015;69:198–206.
- 43. Zhou H, Li P, Fang Y. Single-phase-lag thermoelastic damping models for rectangular cross-sectional micro-and nano-ring reso- nators. Int J Mech Sci. 2019;163: 105132.
- 44. Zhou H, Li P. Dual-phase-lagging thermoelastic damping and frequency shift of micro/nano-ring resonators with rectangular cross-section. Thin-Walled Struct. 2021;159: 107309.
- 45. Li P, Fang Y, Zhang J. Thermoelastic damping in microrings with circular cross-section. J Sound Vib. 2016;361:341–54.
- 46. Kim JH, Kim JH. Thermoelastic attenuation of circular-cross- sectional micro/nanoring including single-phase-lag time. Int J Mech Mater Des. 2021;17:915–29.
- 47. Gu B, He T, Ma Y. Thermoelastic damping analysis in micro- beam resonators considering nonlocal strain gradient based on dual-phase-lag model. Int J Heat Mass Transf. 2021;180: 121771.
- 48. Shi S, He T, Jin F. Thermoelastic damping analysis of size- dependent nano-resonators considering dual-phase-lag heat conduction model and surface effect. Int J Heat Mass Transf. 2021;170: 120977.
- 49. Borjalilou V, Asghari M, Taati E. Thermoelastic damping in nonlocal nanobeams considering dual-phase-lagging effect. J Vib Control. 2020;26(11–12):1042–53.
- 50. Singh B, Kumar H, Mukhopadhyay S. Thermoelastic damping analysis in micro-beam resonators in the frame of modified cou- ple stress and Moore–Gibson–Thompson (MGT) thermoelasticity theories. Waves Random Complex Media. 2021. https://doi.org/ 10.1080/17455030.2021.2001073.
- 51. Yang L, Li P, Gao Q, Gao T. Thermoelastic damping in rectangu- lar micro/nanoplate resonators by considering three-dimensional heat conduction and modified couple stress theory. J Therm Stresses. 2022;45(11):843–64.
- 52. Ge, Y., & Sarkar, A. (2022). Thermoelastic Damping in Vibrations of Small-Scaled Rings with Rectangular Cross-Section by Consid- ering Size Effect on Both Structural and Thermal Domains. Inter- national Journal of Structural Stability and Dynamics 2350026.
- 53. Li M, Cai Y, Fan R, Wang H, Borjalilou V. Generalized ther- moelasticity model for thermoelastic damping in asymmetric vibrations of nonlocal tubular shells. Thin-Walled Struct. 2022;174: 109142.
- 54. Wang YW, Chen J, Zheng RY, Li XF. Thermoelastic damping in circular microplate resonators based on fractional dual-phase-lag model and couple stress theory. Int J Heat Mass Transf. 2023;201: 123570.
- 55. Rao SS. Vibration of continuous systems. John Wiley & Sons; 2019.
- 56. Karimzadeh A, Ahmadian MT, Firoozbakhsh K, Rahaeifard M. Vibrational analysis of size-dependent rotating micro-rings. Int J Struct Stab Dyn. 2017;17(09):1771012.
- 57. Wong SJ, Fox CHJ, McWilliam S. Thermoelastic damping of the in-plane vibration of thin silicon rings. J Sound Vib. 2006;293(1–2):266–85.
- 58. Borjalilou V, Asghari M, Bagheri E. Small-scale thermoelastic damping in micro-beams utilizing the modified couple stress theory and the dual-phase-lag heat conduction model. J Therm Stresses. 2019;42(7):801–14.
- 59. Song J, Mingotti A, Zhang J, Peretto L, Wen H. Accurate damping factor and frequency estimation for damped real-valued sinusoidal signals. IEEE Trans Instrum Meas. 2022;71:1–4. https://doi.org/ 10.1109/TIM.2022.3220300.
- 60. Borjalilou V, Asghari M. Size-dependent strain gradient-based thermoelastic damping in micro-beams utilizing a generalized thermoelasticity theory. Int J Appl Mech. 2019;11(01):1950007.
- 61. Zhou H, Shao D, Song X, Li P. Three-dimensional thermoelastic damping models for rectangular micro/nanoplate resonators with nonlocal-single-phase-lagging effect of heat conduction. Int J Heat Mass Transf. 2022;196: 123271.
- 62. Singh B, Kumar H, Mukhopadhyay S. Analysis of size effects on thermoelastic damping in the Kirchhoff’s plate resonator under Moore–Gibson–Thompson thermoelasticity. Thin-Walled Struct. 2022;180: 109793.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-313b43d9-3b89-43eb-8e53-411419a0d4bc